scholarly journals Aspects of Mass Loss and Angular Momentum Loss in Binaries Containing Cool Components

1992 ◽  
Vol 151 ◽  
pp. 167-173
Author(s):  
Peter P. Eggleton

Cool stars show evidence of dynamo activity which is stronger with more rapid rotation. Tidal friction in a moderately close binary can be a cause of relatively rapid rotation, so that cool components in such binaries are presumably liable to stronger stellar winds than single cool stars. As a consequence, the binary can be subject to orbital angular momentum loss. Both the mass loss and the orbital angular momentum loss can be on a timescale comparable to nuclear evolution in a red subgiant, or even faster. RS CVn stars probably give the best possibility of measuring these processes, although some observational data are difficult to reconcile with simple theories.Barium stars, and symbiotics, may both be affected by these processes. They must be the products of evolution of moderately wide binaries, as must such objects as cataclysmic variables. I attempt to define the ranges of zero-age parameters necessary to produce such varied objects. A simplistic model of the distribution of stars brighter than 6th magnitude (a ‘Theoretical Bright Star Catalogue’) suggests that for every three Ba stars with a measurable orbit, there should be one main sequence ‘Ba star’.

2009 ◽  
Vol 5 (S262) ◽  
pp. 362-363
Author(s):  
Belinda Kalomeni

AbstractWe discuss the possible angular momentum loss mechanisms in AM Her type cataclysmic variables and their corresponding mass loss rates using the observed physical parameters of them.


1982 ◽  
Vol 69 ◽  
pp. 187-189
Author(s):  
F. Mardirossian ◽  
G. Giuricin

AbstractWe have examined the observational data of 102 Algols in order to clarify the implications on their evolutionary scenario of various assumptions concerning mass and angular momentum loss during mass transfer. We have found that case B mass exchange is strongly favoured for Algols of relatively low total mass (~ M < 7 Mʘ), while case A predominates, though not so widely as expected in Algols of higher total mass.


1980 ◽  
Vol 88 ◽  
pp. 103-107
Author(s):  
J. P. De Grève ◽  
D. Vanbeveren

From a search through the literature 174 close binaries with completely known absolute dimensions are sampled. Distinction is made between systems before and after mass exchange, giving resp. 100 and 40 systems (a third group contains the systems not definitely belonging to these two). Mass, period and mass ratio distributions and relations of the group of “unevolved” binaries (i.e. prior to mass exchange) are transformed into corresponding distributions and relations of evolved binaries. The transformations are based upon the M1 f = g (M1 i) relation derived from an extended set of published theoretical computations on the evolution of close binaries. Final masses resulting from the same initial mass are averaged. Equations are derived for the cases A (for all masses), B1 (M1 i/Mo < 2.8), B2 (2.8 < M1 i/Mo < 9) and B3 (M1 i/Mo > 9). For the changes of the period due to angular momentum loss the formalism of Vanbeveren et al. (1979) was adopted. The following characteristics of the system after mass exchange are computed: M1 f, M2 f (and qf), Pf. Three different modes were applied for the mass loss from the system:a) conservative case (mass and angular momentum of the system remain constant), called C.b) non conservative case with 50% of the transferred mass leaving the system with a small or a large angular momentum loss (resp. called NC51 and NC53).c) non conservative case with 100% of the transferred mass leaving the system with a small or a large angular momentum loss (resp. called NC101 and NC103).


2019 ◽  
Vol 625 ◽  
pp. A89 ◽  
Author(s):  
D. Gagnier ◽  
M. Rieutord ◽  
C. Charbonnel ◽  
B. Putigny ◽  
F. Espinosa Lara

The understanding of the rotational evolution of early-type stars is deeply related to that of anisotropic mass and angular momentum loss. In this paper, we aim to clarify the rotational evolution of rapidly rotating early-type stars along the main sequence (MS). We have used the 2D ESTER code to compute and evolve isolated rapidly rotating early-type stellar models along the MS, with and without anisotropic mass loss. We show that stars with Z = 0.02 and masses between 5 and 7 M⊙ reach criticality during the main sequence provided their initial angular velocity is larger than 50% of the Keplerian one. More massive stars are subject to radiation-driven winds and to an associated loss of mass and angular momentum. We find that this angular momentum extraction from the outer layers can prevent massive stars from reaching critical rotation and greatly reduce the degree of criticality at the end of the MS. Our model includes the so-called bi-stability jump of the Ṁ − Teff relation of 1D-models. This discontinuity now shows up in the latitude variations of the mass-flux surface density, endowing rotating massive stars with either a single-wind regime (no discontinuity) or a two-wind regime (a discontinuity). In the two-wind regime, mass loss and angular momentum loss are strongly increased at low latitudes inducing a faster slow-down of the rotation. However, predicting the rotational fate of a massive star is difficult, mainly because of the non-linearity of the phenomena involved and their strong dependence on uncertain prescriptions. Moreover, the very existence of the bi-stability jump in mass-loss rate remains to be substantiated by observations.


Sign in / Sign up

Export Citation Format

Share Document