Formation of the SN1987A Ring due to magnetic pressure

1997 ◽  
Vol 180 ◽  
pp. 473-473
Author(s):  
M. Mori ◽  
H. Washimi ◽  
S. Shibata

Several weeks after the explosion of supernova (SN) SN1987A, the UV flash of the SN illuminated a ring-like structure in the circumstellar material at about 0.65 ly from the SN. The interaction between the stellar winds from the SN progenitor is considered to be the candidate for the formation of the circumstellar structure. In the case that the stellar winds are spherically symmetric, the interaction should result in a shell-like structure. However, Washimi, Shibata & Mori (1996) show that the magnetic field in the winds causes an anisotropy which leads to the formation of a ring-like structure. When the fast wind of the blue supergiant phase of the progenitor sweeps up the surrounding slow wind of the red-supergiant phase, the magnetic field as well as the wind material are piled up in the interaction region. Since the magnetic energy increases in proportion to the square of the amplitude, the magnetic field exhibits its effect prominently at the interaction region; due to the magnetic pressure force the material at lower latitudes is compressed into a ring-like structure. It is suggested that this magnetic process can also explain the newly observed pair of rings of the SN1987A nebula. We note that the idea of a magnetic field effect is consistent with the radio observation of a supernova remnant, detected by Staveley-Smith et al. (1992) at about 1200 days after the explosion. This radio emission is explained by the collision of the supernova blast wave with the shocked blue wind. This position corresponds to the averaged expansion speed of the supernova ejecta ∼ 0.08 ly which is consistent with the estimation by Shigeyama and Nomoto (1990). The estimated magnetic-energy density by the minimum-energy argument is ∼ 4 × 10–8f–4/7N m–2, where f is the fractional volume of the radiating acceleration region, suggesting a magnetic field of a few milli-Gauss or more (Chevalier 1992). This field intensity is consistent with an intensity of ≈ 2 · 10–4 Gauss obtained between the reverse shock and the contact surface shown, if one takes into account a further enhancement of the field due to the sweeping-up process by the supernova blast wave. When the SN ejector collides with the ring at the end of this century or at the beginning of the next one, we can also expect more intense radio emission at rather middle and high latitudes where the magnetic intensity is greater, rather than at the equator where the ring-like structure is located.

2015 ◽  
Vol 81 (6) ◽  
Author(s):  
H. K. Moffatt

A one-dimensional model of magnetic relaxation in a pressureless low-resistivity plasma is considered. The initial two-component magnetic field $\boldsymbol{b}(\boldsymbol{x},t)$ is strongly helical, with non-uniform helicity density. The magnetic pressure gradient drives a velocity field that is dissipated by viscosity. Relaxation occurs in two phases. The first is a rapid initial phase in which the magnetic energy drops sharply and the magnetic pressure becomes approximately uniform; the helicity density is redistributed during this phase but remains non-uniform, and although the total helicity remains relatively constant, a Taylor state is not established. The second phase is one of slow diffusion, in which the velocity is weak, though still driven by persistent weak non-uniformity of magnetic pressure; during this phase, magnetic energy and helicity decay slowly and at constant ratio through the combined effects of pressure equalisation and finite resistivity. The density field, initially uniform, develops rapidly (in association with the magnetic field) during the initial phase, and continues to evolve, developing sharp maxima, throughout the diffusive stage. Finally it is proved that, if the resistivity is zero, the spatial mean $\langle (\boldsymbol{b}\boldsymbol{\cdot }\boldsymbol{{\rm\nabla}}\times \boldsymbol{b})/b^{2}\rangle$ is an invariant of the governing one-dimensional induction equation.


1999 ◽  
Vol 193 ◽  
pp. 400-401
Author(s):  
Svetozar A. Zhekov ◽  
A.V. Myasnikov ◽  
E.V. Barsky

The geometry structure of the magnetic field in colliding stellar winds is studied. It is shown that the magnetic field influence in the interaction region depends mainly on the ratio of the wind ram pressures of the components, the ratio of the stellar linear rotational velocity to the wind velocity of the magnetized star, and the stellar separation. For the radiative colliding winds the magnetic field influence increases with the importance of the radiative losses. An asymmetric magnetic field structure appears for a given set of binary parameters and the interaction region might be an asymmetric source of non-thermal radio emission.


Author(s):  
Francesca Maggioni ◽  
Renzo L. Ricca

New results on the groundstate energy of tight, magnetic knots are presented. Magnetic knots are defined as tubular embeddings of the magnetic field in an ideal, perfectly conducting, incompressible fluid. An orthogonal, curvilinear coordinate system is introduced and the magnetic energy is determined by the poloidal and toroidal components of the magnetic field. Standard minimization of the magnetic energy is carried out under the usual assumptions of volume- and flux-preserving flow, with the additional constraints that the tube cross section remains circular and that the knot length (ropelength) is independent from internal field twist (framing). Under these constraints the minimum energy is determined analytically by a new, exact expression, function of ropelength and framing. Groundstate energy levels of tight knots are determined from ropelength data obtained by the SONO tightening algorithm. Results for torus knots are compared with previous work, and the groundstate energy spectrum of the first prime knots — up to 10 crossings — is presented and analysed in detail. These results demonstrate that ropelength and framing determine the spectrum of magnetic knots in tight configuration.


Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 191-194 ◽  
Author(s):  
Rafal Chodun ◽  
Katarzyna Nowakowska-Langier ◽  
Krzysztof Zdunek ◽  
Sebastian Okrasa

Abstract In this work, we present the first results of our research on the synergy of fields, electric and magnetic, in the initiation and development of glow discharge under reduced pressure. In the two-electrode system under reduced pressure, the breakdown voltage characterizes a minimum energy input of the electric field to initiate and sustain the glow discharge. The glow discharge enhanced by the magnetic field applied just above the surface of the cathode influences the breakdown voltage decreasing its value. The idea of the experiment was to verify whether the contribution of potential energy of the magnetic field applied around the cathode is sufficiently effective to locate the plasma of glow discharge to the grounded cathode, which, in fact, is the part of a vacuum chamber wall (the anode is positively biased in this case). In our studies, we used the grounded magnetron unit with positively biased anode in order to achieve favorable conditions for the deposition of thin films on fibrous substrates such as fabrics for metallization, assuming that locally applied magnetic field can effectively locate plasma. The results of our studies (Paschen curve with the participation of the magnetic field) seem to confirm the validity of the research assumption. What is the most spectacular - the glow discharge was initiated between introduced into the chamber anode and the grounded cathode of magnetron ‘assisted’ by the magnetic field (discharge did not include the area of the anode, which is a part of the magnetron construction).


2021 ◽  
Vol 502 (2) ◽  
pp. 2807-2814
Author(s):  
Martin G H Krause ◽  
Martin J Hardcastle

ABSTRACT The ARCADE 2 balloon bolometer along with a number of other instruments have detected what appears to be a radio synchrotron background at frequencies below about 3 GHz. Neither extragalactic radio sources nor diffuse Galactic emission can currently account for this finding. We use the locally measured cosmic ray electron population, demodulated for effects of the Solar wind, and other observational constraints combined with a turbulent magnetic field model to predict the radio synchrotron emission for the Local Bubble. We find that the spectral index of the modelled radio emission is roughly consistent with the radio background. Our model can approximately reproduce the observed antenna temperatures for a mean magnetic field strength B between 3 and 5 nT. We argue that this would not violate observational constraints from pulsar measurements. However, the curvature in the predicted spectrum would mean that other, so far unknown sources would have to contribute below 100 MHz. Also, the magnetic energy density would then dominate over thermal and cosmic ray electron energy density, likely causing an inverse magnetic cascade with large variations of the radio emission in different sky directions as well as high polarization. We argue that this disagrees with several observations and thus that the magnetic field is probably much lower, quite possibly limited by equipartition with the energy density in relativistic or thermal particles (B = 0.2−0.6 nT). In the latter case, we predict a contribution of the Local Bubble to the unexplained radio background at most at the per cent level.


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


Magnetic relaxation of a magnetic field embedded in a perfectly conducting incompressible fluid to minimum energy magnetostatic equilibrium states is considered. It is supposed that the magnetic field is confined to a single flux tube which may be knotted. A local non-orthogonal coordinate system, zero-framed with respect to the knot, is introduced, and the field is decomposed into toroidal and poloidal ingredients with respect to this system. The helicity of the field is then determined; this vanishes for a field that is either purely toroidal or purely poloidal. The magnetic energy functional is calculated under the simplifying assumptions that the tube is axially uniform and of circular cross-section. The case of a tube with helical axis is first considered, and new results concerning kink mode instability and associated bifurcations are obtained. The case of flux tubes in the form of torus knots is then considered and the ‘ground-state’ energy function ͞m ( h ) (where h is an internal twist parameter) is obtained; as expected, ͞m ( h ), which is a topological invariant of the knot, increases with increasing knot complexity. The function ͞m ( h ) provides an upper bound on the corresponding function m ( h ) that applies when the above constraints on tube structure are removed. The technique is applicable to any knot admitting a parametric representation, on condition that points of vanishing curvature are excluded.


2021 ◽  
Vol 44 ◽  
pp. 92-95
Author(s):  
A.I. Podgorny ◽  
◽  
I.M. Podgorny ◽  
A.V. Borisenko ◽  
N.S. Meshalkina ◽  
...  

Primordial release of solar flare energy high in corona (at altitudes 1/40 - 1/20 of the solar radius) is explained by release of the magnetic energy of the current sheet. The observed manifestations of the flare are explained by the electrodynamical model of a solar flare proposed by I. M. Podgorny. To study the flare mechanism is necessary to perform MHD simulations above a real active region (AR). MHD simulation in the solar corona in the real scale of time can only be carried out thanks to parallel calculations using CUDA technology. Methods have been developed for stabilizing numerical instabilities that arise near the boundary of the computational domain. Methods are applicable for low viscosities in the main part of the domain, for which the flare energy is effectively accumulated near the singularities of the magnetic field. Singular lines of the magnetic field, near which the field can have a rather complex configuration, coincide or are located near the observed positions of the flare.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


1998 ◽  
Vol 164 ◽  
pp. 165-166
Author(s):  
A. B. Pushkarev ◽  
D. C. Gabuzda

AbstractThe polarization electric vectors in the VLBI jets of BL Lacertae objects are typically aligned with the jet structure. If the jet radio emission is optically thin synchrotron emission, this implies that the magnetic field is perpendicular to the jet, usually interpreted as a signature of shocks. The distribution of polarization position angles in the VLBI core components appears to be bimodal, with the polarization angles either aligned with or perpendicular to the jet direction. In order to study the origin of this characteristic polarization structure, we have made VLBI polarization observations of all 34 sources in the Kühr and Schmidt sample of BL Lacertae objects.


Sign in / Sign up

Export Citation Format

Share Document