Probing the X-ray Variability of X-ray Binaries
Kilohertz quasi-periodic oscillations (kHz QPOs) has been regarded as representing the Keplerian frequency at the inner disk edge in the neutron star X-ray binaries. The so-called “parallel tracks” on the plot of the kHz QPO frequency vs. X-ray flux in neutron star X-ray binaries, on the other hand, show the correlation between the kHz QPO frequency and the X-ray flux on time scales from hours to days. This is suspected as caused by the variations of the mass accretion rate through the accretion disk surrounding the neutron star. We show here that by comparing the correlation between the kHz QPO frequency and the X-ray count rate on a certain QPO time scale observed approximately simultaneous in the Fourier power spectra of the X-ray light curve, we have found evidences that the X-ray flux of millihertz QPOs in neutron star X-ray binaries is generated inside the inner disk edge if adopting that the kilohertz QPO frequency is an orbital frequency at the inner disk edge.