scholarly journals High Angular Resolution Observations of Maser Kinematics Near Low Mass Young Stellar Objects

2001 ◽  
Vol 205 ◽  
pp. 256-257
Author(s):  
Kevin B. Marvel ◽  
Mark Claussen ◽  
H. Alwyn Wootten ◽  
Bruce Wilking

With the advent of new correlators and dedicated arrays, spectral line VLBI is entering its ascendancy as a probe of a variety of interesting astrophysical environments. One of the most interesting environments where spectroscopic VLBI techniques are valuable are the regions directly coincident with forming stars. In these sources, water maser emission is observed when the outflowing jets of material interact with the surrounding medium. Observations of these water masers dramatically reveal the innermost regions of the star formation process at or below the 1-AU scale.We have found that the water masers clearly trace the jets at these scales. The masers show space motions on the order of 60 to 100 kms−1 and form within a few AU of the exciting protostar. By observing the distributions and motions of the water masers associated with these objects, we may be able to address in greater detail the collimation mechanism of the jets seen in these protostars.In this brief poster proceeding, we provide a summary image of the water masers associated with SVS13, the driving source for the HH 7-11 objects. We have also mapped the masers associated with IRAS 16293-2422, IRAS 05413-0104, IRAS 4A and IRAS 4B, both in the NGC 1333 star forming region. For further information on these sources, please contact any of the authors directly.

2002 ◽  
Vol 206 ◽  
pp. 27-34
Author(s):  
Mark J. Claussen

I present a review of observations of water masers, in particular very high angular resolution of water masers using Very Long Baseline Interferometry, with which it is possible to probe the environment of young stellar objects and forming stars within only a few A.U. of the protostar, its accretion disk, and therefore the base of outflowing material. Although reference is made to some high-luminosity sources, the main thrust of the review are the water masers found toward forming objects whose mass and luminosity will be approximately that of the Sun when they reach the main sequence.


2018 ◽  
Vol 612 ◽  
pp. A54 ◽  
Author(s):  
Hauyu Baobab Liu ◽  
Michael M. Dunham ◽  
Ilaria Pascucci ◽  
Tyler L. Bourke ◽  
Naomi Hirano ◽  
...  

Context. Young stellar objects (YSOs) may undergo periods of active accretion (outbursts), during which the protostellar accretion rate is temporarily enhanced by a few orders of magnitude. Whether or not these accretion outburst YSOs possess similar dust and gas reservoirs to each other, and whether or not their dust and gas reservoirs are similar as quiescent YSOs, are issues yet to be clarified. Aims. The aim of this work is to characterize the millimeter thermal dust emission properties of a statistically significant sample of long and short duration accretion outburst YSOs (i.e., FUors and EXors) and the spectroscopically identified candidates of accretion outbursting YSOs (i.e., FUor-like objects). Methods. We have carried out extensive Submillimeter Array (SMA) observations mostly at ~225 GHz (1.33 mm) and ~272 GHz (1.10 mm), from 2008 to 2017. We covered accretion outburst YSOs located at <1 kpc distances from the solar system. Results. We analyze all the existing SMA data of such objects, both published and unpublished, in a coherent way to present a millimeter interferometric database of 29 objects. We obtained 21 detections at >3σ significance. Detected sources except for the two cases of V883 Ori and NGC 2071 MM3 were observed with ~1″ angular resolution. Overall our observed targets show a systematically higher millimeter luminosity distribution than those of the M* > 0.3 M⊙ Class II YSOs in the nearby (≲400 pc) low-mass star-forming molecular clouds (e.g., Taurus, Lupus, Upp Scorpio, and Chameleon I). In addition, at 1 mm our observed confirmed binaries or triple-system sources are systematically fainter than the rest of the sources even though their 1 mm fluxes are broadly distributed. We may have detected ~30−60% millimeter flux variability from V2494 Cyg and V2495 Cyg, from the observations separated by approximately one year.


1994 ◽  
Vol 158 ◽  
pp. 387-390
Author(s):  
J.-L. Monin ◽  
J. Bouvier ◽  
F. Malbet

The existence of circumstellar disks around young stellar objects like T Tauri stars is now well accepted. Such disks would have solar system sizes and, at the distance of the nearest star forming cloud, an angular diameter of 0.01 to 1 arcsecond at most, requiring very high angular resolution to be detected. Due to the nature of the emission process in circumstellar disks and to chromatic properties of ground based observations, disk imaging is expected to be more efficient in the near infrared. Also, multi-aperture interferometry in this wavelength range (1 – 10 μm) is expected to bring considerable insight into the disks properties and evolution in revealing their inner physical structure.In this paper, we present synthetic images of circumstellar accretion disks. The images have been computed from a complete disk vertical structure model.


1997 ◽  
Vol 178 ◽  
pp. 31-44 ◽  
Author(s):  
Geoffrey A. Blake

Recent advances in the observational characterization of young stellar objects (YSOs) with millimeter-wave aperture synthesis arrays and (sub)millimeter single dish telescopes are reviewed. Studies of circumstellar material with ∼arc second resolution, which have only become possible at these frequencies within the past few years and which can potentially probe all stages of the star formation process, are emphasized. Molecules that are sensitive to different routes of formation and modification are outlined, including comments about their utility in distinguishing between a variety of environments and histories in star-forming cloud cores.


2000 ◽  
Vol 197 ◽  
pp. 61-70
Author(s):  
Nagayoshi Ohashi

We have carried out interferometric observations of pre-protostellar and protostellar envelopes in Taurus. Protostellar envelopes are dense gaseous condensations with young stellar objects or protostars, while pre-protostellar envelopes are those without any known young stellar objects. Five pre-protostellar envelopes have been observed in CCS JN=32–21, showing flattened and clumpy structures of the envelopes. The observed CCS spectra show moderately narrow line widths, ~0.1 to ~0.35 km s–1. One pre-protostellar envelope, L1544, shows a remarkable velocity pattern, which can be explained in terms of infall and rotation. Our C18O J=1–0 observations of 8 protostellar envelopes show that they have also flattened structures like pre-protostellar envelopes but no clumpy structures. Four out the eight envelopes show velocity patterns that can be explained by motions of infall (and rotation). Physical properties of pre-protostellar and protostellar envelopes are discussed in detail.


2002 ◽  
Vol 206 ◽  
pp. 63-67 ◽  
Author(s):  
Kevin B. Marvel ◽  
Mark Claussen ◽  
Alwyn Wootten

We present preliminary observations of water masers associated with IRAS4, a pair of young stellar objects in the NGC 1333 star forming region. The masers are quite strong and spatially distinct. Proper motion observations have been obtained from various epochs of observation typically separated by about three weeks. IRAS4A consists of two regions of maser activity separated by about 114 AU along a position angle of 138 degrees. Expansion of about 68 km/s is detected. IRAS4B consists of two linear emission regions separated by about 175 AU on a 150 degree position angle. The linear features are about 15 AU in length and about 2 AU thick. They are expanding away from each other at about 70 km/s.


2008 ◽  
Vol 17 (10) ◽  
pp. 1889-1894 ◽  
Author(s):  
A. T. ARAUDO ◽  
G. E. ROMERO ◽  
V. BOSCH-RAMON ◽  
J. M. PAREDES

Recent radio observations support a picture for star formation where there is accretion of matter onto a central protostar with the ejection of molecular outflows that can affect the surrounding medium. The impact of a supersonic outflow on the ambient gas can produce a strong shock that could accelerate particles up to relativistic energies. Strong evidence for this has been the detection of nonthermal radio emission coming from the jet termination region of some young massive stars. In the present contribution, we study the possible high-energy emission due to the interaction of relativistic particles, electrons and protons, with the magnetic, photon and matter fields inside a giant molecular cloud. Electrons lose energy via relativistic Bremsstrahlung, synchrotron radiation and inverse Compton interactions, and protons cool mainly through inelastic collisions with atoms in the cloud. We conclude that some massive young stellar objects (YSOs) might be detectable at gamma-rays by next generation instruments, both satellite-borne and ground based.


2001 ◽  
Vol 200 ◽  
pp. 117-121 ◽  
Author(s):  
Ralf Launhardt

The Bok globule CB230 (L1177) contains an active, low-mass star-forming core which is associated with a double NIR reflection nebula, a collimated bipolar molecular outflow, and strong mm continuum emission. The morphology of the NIR nebula suggests the presence of a deeply embedded, wide binary protostellar system. High-angular resolution observations now reveal the presence of two sub-cores, two distinct outflow centers, and an embedded accretion disk associated with the western bipolar NIR nebula. Judging from the separation and specific angular momentum, the CB230 double protostar system probably results from core fragmentation and will end up at the upper end of the pre-main sequence binary separation distribution.


Sign in / Sign up

Export Citation Format

Share Document