Arousing the LTP and learning debate

1997 ◽  
Vol 20 (4) ◽  
pp. 622-623 ◽  
Author(s):  
Stephen Maren

Shors & Matzel provide compelling arguments against a role for hippocampal long-term potentiation (LTP) in mammalian learning and memory. As an alternative, they suggest that LTP is an arousal mechanism. I will argue that this view is not a satisfactory alternative to current conceptions of LTP function.

2001 ◽  
Vol 85 (1) ◽  
pp. 117-124 ◽  
Author(s):  
J.N.D. Kerr ◽  
J. R. Wickens

Dopamine and glutamate are key neurotransmitters involved in learning and memory mechanisms of the brain. These two neurotransmitter systems converge on nerve cells in the neostriatum. Dopamine modulation of activity-dependent plasticity at glutamatergic corticostriatal synapses has been proposed as a cellular mechanism for learning in the neostriatum. The present research investigated the role of specific subtypes of dopamine receptors in long-term potentiation (LTP) in the corticostriatal pathway, using intracellular recording from striatal neurons in a corticostriatal slice preparation. In agreement with previous reports, LTP could be induced reliably under Mg2+-free conditions. This Mg2+-free LTP was blocked by dopamine depletion and by the dopamine D-1/D-5 receptor antagonist SCH 23390 but was not blocked by the dopamine D-2 receptor antagonist remoxipride or the GABAA antagonist picrotoxin. In dopamine-depleted slices, the ability to induce LTP could be restored by bath application of the dopamine D-1/D-5 receptor agonist, SKF 38393. These results show that activation of dopamine D-1/D-5 receptors by either endogenous dopamine or exogenous dopamine agonists is a requirement for the induction of LTP in the corticostriatal pathway. These findings have significance for current understanding of learning and memory mechanisms of the neostriatum and for theoretical understanding of the mechanism of action of drugs used in the treatment of psychotic illnesses and Parkinson's disease.


2013 ◽  
Vol 33 (2) ◽  
pp. 203-213 ◽  
Author(s):  
G Han ◽  
L An ◽  
B Yang ◽  
L Si ◽  
T Zhang

The aim of the present study was to investigate whether cognitive behavioral impairment, induced by nicotine in offspring rats, was associated with the alteration of hippocampal short-term potentiation (STP) and long-term potentiation (LTP) and to discuss the potential underlying mechanism. Young adult offspring rats were randomly divided into three groups. The groups include: control group (CC), nicotine group 1 (NC), in which their mothers received nicotine from gestational day 3 (GD3) to GD18, and nicotine group 2 (CN), in which young adult offspring rats received nicotine from postnatal day 42 (PD42) to PD56. Morris water maze (MWM) test was performed and then field excitatory postsynaptic potentials elicited by the stimulation of perforant pathway were recorded in the hippocampal dentate gyrus region. The results of the MWM test showed that learning and memory were impaired by either prenatal or postnatal nicotine exposure. In addition, it was found that there was no statistical difference of the MWM data between both nicotine treatments. In the electrophysiological test, LTP and STP were significantly inhibited in both NC and CN groups in comparison with the CC group. Notably, STP in CN group was also lower than that in the NC group. These findings suggested that both prenatal and postnatal exposure to nicotine induced learning and memory deficits, while the potential mechanism might be different from each other due to their dissimilar impairments of synaptic plasticity.


2020 ◽  
pp. 83-95
Author(s):  
Gabriele M. Rune

Estradiol synthesis depends on the activity of aromatase, the enzyme that specifically and irreversibly converts testosterone to estradiol in steroidogenesis. Aromatase is expressed and is active in the hippocampus, a brain region related to learning and memory. Dynamics of spines and spine synapses, including expression of presynaptic and postsynaptic proteins, are controlled by hippocampus-derived estradiol in female rodents, but not in male rodents. This also holds true for long-term potentiation. Inhibition of aromatase, either pharmacologically or by genetic approaches, results in a decrease in synapse density and synaptic potentiation in female animals and in neonatal hippocampal cultures that originate from females. The consistency of the findings in rodents and in perinatal primary hippocampal cultures points to sex-specific differentiation processes during embryonic development, which underlie sex-dependent differences in neurosteroid action in the hippocampus.


2020 ◽  
Vol 118 (1) ◽  
pp. e2017841117
Author(s):  
Yifan Zhang ◽  
Min Zhu ◽  
Yutian Sun ◽  
Binliang Tang ◽  
Guimin Zhang ◽  
...  

The neural mechanisms underlying the impacts of noise on nonauditory function, particularly learning and memory, remain largely unknown. Here, we demonstrate that rats exposed postnatally (between postnatal days 9 and 56) to structured noise delivered at a sound pressure level of ∼65 dB displayed significantly degraded hippocampus-related learning and memory abilities. Noise exposure also suppressed the induction of hippocampal long-term potentiation (LTP). In parallel, the total or phosphorylated levels of certain LTP-related key signaling molecules in the synapses of the hippocampus were down-regulated. However, no significant changes in stress-related processes were found for the noise-exposed rats. These results in a rodent model indicate that even moderate-level noise with little effect on stress status can substantially impair hippocampus-related learning and memory by altering the plasticity of synaptic transmission. They support the importance of more thoroughly defining the unappreciated hazards of moderately loud noise in modern human environments.


2016 ◽  
Vol 23 (3) ◽  
pp. 221-231 ◽  
Author(s):  
Victor Briz ◽  
Michel Baudry

Although calpain was proposed to participate in synaptic plasticity and learning and memory more than 30 years ago, the mechanisms underlying its activation and the roles of different substrates have remained elusive. Recent findings have provided evidence that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity. In particular, while calpain-1 activation is the initial trigger for certain forms of synaptic plasticity, that is, long-term potentiation, calpain-2 activation restricts the extent of plasticity. Moreover, while calpain-1 rapidly cleaves regulatory and cytoskeletal proteins, calpain-2-mediated stimulation of local protein synthesis reestablishes protein homeostasis. These findings have important implications for our understanding of learning and memory and disorders associated with impairment in these processes.


Gerontology ◽  
2018 ◽  
Vol 64 (6) ◽  
pp. 551-561 ◽  
Author(s):  
Sheng-Feng Tsai ◽  
Nai-Wen Ku ◽  
Tzu-Feng Wang ◽  
Yan-Hsiang Yang ◽  
Yao-Hsiang Shih ◽  
...  

Background: Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Objective: Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Methods: Young (3 months), middle-aged (9–12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. Results: The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. Conclusion: The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline.


Sign in / Sign up

Export Citation Format

Share Document