scholarly journals Expected Scientific Performance of the Three Spectrometers on the Extreme Ultraviolet Explorer

1990 ◽  
Vol 115 ◽  
pp. 335-338
Author(s):  
J. V. Vallerga ◽  
P. Jelinsky ◽  
P. W. Vedder ◽  
R. F. Malina

AbstractThe expected in-orbit performance of the three spectrometers included on the Extreme Ultraviolet Explorer (EUVE) astronomical satellite is presented. Recent calibrations of the gratings, mirrors and detectors using monochromatic and continuum EUV light sources allow the calculation of the spectral resolution and throughput of the instrument. An effective area range of 0.2 to 2.8 cm2 is achieved over the wavelength range 70-600Å with a peak spectral resolution λ/Δλ (FWHM) of ~ 360 assuming a spacecraft pointing knowledge of 10 arc seconds (FWHM). For a 40,000 sec observation, the average 3σ sensitivity to a monochromatic line source is 3 × 103 photons cm-2 sec-1. Simulated observations of known classes of EUV sources such as hot white dwarfs and cataclysmic variables are also presented.

Author(s):  
Yun Yuan ◽  
Yan-Yun Ma ◽  
Wenpeng Wang ◽  
Shijia Chen ◽  
Ye Cui ◽  
...  

Abstract In this study, we use the FLASH radiation hydrodynamic code and the FLYCHK atomic code to investigate the energy conversion and spectra associated with laser–Sn target interactions with 1 µm and 2 µm wavelength lasers. We found that the conversion efficiency (CE) reached as much as 3.38% with the 2 µm laser, which is 1.48 percentage points higher than the 1 µm laser (CE = 1.9%). In addition, we analyzed the contribution of dominant ionization states to the emission spectrum for both lasers. We observed that the growths of the out-of-band emission eventually led to a broadening of the spectrum, resulting in a reduction of SP for the 1 µm laser. By contrast, the emission main peaks were all centered near 13.5nm for the 2 µm laser, which is beneficial for efficient emission of light with a 13.5 nm wavelength (relevant for nanolithographic applications).


1994 ◽  
Vol 144 ◽  
pp. 619-624 ◽  
Author(s):  
K. Wilhelm ◽  
W. Curdt ◽  
A. H. Gabriel ◽  
M. Grewing ◽  
M. C. E. Huber ◽  
...  

AbstractThe experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of extreme ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy; provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature range from 104to more than 1.8 x 106K. The spatial and spectral resolution capabilities of the instrument will be considered in this contribution in some detail, and a new detector concept will be introduced.


2001 ◽  
Vol 26 (21) ◽  
pp. 1729
Author(s):  
M. Bellini ◽  
S. Cavalieri ◽  
C. Corsi ◽  
M. Materazzi

2009 ◽  
Author(s):  
Paul E. Barrett ◽  
Patrick Godon ◽  
Michael E. Van Steenberg ◽  
George Sonneborn ◽  
H. Warren Moos ◽  
...  

1996 ◽  
Vol 152 ◽  
pp. 309-316
Author(s):  
Frits Paerels ◽  
Min Young Hur ◽  
Christopher W. Mauche

A longstanding problem in the interpretation of the X-ray and extreme ultraviolet emission from strongly magnetic cataclysmic variables can be addressed definitively with high resolution EUV spectroscopy. A detailed photospheric spectrum of the accretion-heated polar cap of the white dwarf is sensitive in principle to the temperature structure of the atmosphere. This may allow us to determine where and how the bulk of the accretion energy is thermalized. The EUVE data on AM Herculis and EF Eridani are presented and discussed in this context.


Sign in / Sign up

Export Citation Format

Share Document