A Search for Dyson Spheres around Late-Type Stars in the Solar Neighborhood II

1997 ◽  
Vol 161 ◽  
pp. 707-709 ◽  
Author(s):  
Jun Jugaku ◽  
Shiro Nishimura

AbstractWe continued our search for partial (incomplete) Dyson spheres associated with 50 solar-type stars (spectral classes F, G, and K) within 25 pc of the Sun. No candidate objects were found.

2004 ◽  
Vol 213 ◽  
pp. 437-438
Author(s):  
Jun Jugaku ◽  
Shiro Nishimura

We continued our search for partial (incomplete) Dyson spheres associated with solar-type stars (spectral types F, G and K) within 25 pc of the Sun. No candidate objects were found in a total of 384 stars.


1983 ◽  
Vol 102 ◽  
pp. 161-164
Author(s):  
Theodore Simon ◽  
Ann Merchant Boesgaard

The difficulties of measuring magnetic fields in late-type stars other than the sun are well known, as one is reminded by other contributions to these Proceedings. This Symposium nevertheless comes at a very opportune time, as we are now at the point where we can begin to explore the relationship of stellar magnetism to flare activity and quiescent cool star chromospheres, transition regions (TRs), and coronae.


1985 ◽  
Vol 111 ◽  
pp. 509-512
Author(s):  
A. Ardeberg ◽  
H. Lindgren

An attempt has been made to calibrate the indices of the uvby photometric system in terms of MK classes equal to and later than that of the Sun. Results are presented for stars of luminosity classes V and III; b-y and c1 data are given. For stars on the main sequence, the relation between m1 and b-y is discussed for stars of solar type.


2019 ◽  
Vol 15 (S354) ◽  
pp. 384-391
Author(s):  
L. Doyle ◽  
G. Ramsay ◽  
J. G. Doyle ◽  
P. F. Wyper ◽  
E. Scullion ◽  
...  

AbstractWe report on our project to study the activity in both the Sun and low mass stars. Utilising high cadence, Hα observations of a filament eruption made using the CRISP spectropolarimeter mounted on the Swedish Solar Telescope has allowed us to determine 3D velocity maps of the event. To gain insight into the physical mechanism which drives the event we have qualitatively compared our observation to a 3D MHD reconnection model. Solar-type and low mass stars can be highly active producing flares with energies exceeding erg. Using K2 and TESS data we find no correlation between the number of flares and the rotation phase which is surprising. Our solar flare model can be used to aid our understanding of the origin of flares in other stars. By scaling up our solar model to replicate observed stellar flare energies, we investigate the conditions needed for such high energy flares.


2015 ◽  
Vol 11 (S320) ◽  
pp. 134-137
Author(s):  
John P. Pye ◽  
Simon R. Rosen

AbstractWe present estimates of cool-star X-ray flare rates determined from the XMM-Tycho survey (Pyeet al. 2015, A&A, 581, A28), and compare them with previously published values for the Sun and for other stellar EUV and white-light samples. We demonstrate the importance of applying appropriate corrections, especially in regard to the total, effective size of the stellar sample. Our results are broadly consistent with rates reported in the literature for Kepler white-light flares from solar-type stars, and with extrapolations of solar flare rates, indicating the potential of stellar X-ray flare observations to address issues such as ‘space weather’ in exoplanetary systems and our own solar system.


2022 ◽  
Vol 163 (2) ◽  
pp. 44
Author(s):  
Bradley M. S. Hansen

Abstract We present a catalog of unbound stellar pairs, within 100 pc of the Sun, that are undergoing close, hyperbolic, encounters. The data are drawn from the GAIA EDR3 catalog, and the limiting factors are errors in the radial distance and unknown velocities along the line of sight. Such stellar pairs have been suggested to be possible events associated with the migration of technological civilizations between stars. As such, this sample may represent a finite set of targets for a SETI search based on this hypothesis. Our catalog contains a total of 132 close passage events, featuring stars from across the entire main sequence, with 16 pairs featuring at least one main-sequence star of spectral type between K1 and F3. Many of these stars are also in binaries, so that we isolate eight single stars as the most likely candidates to search for an ongoing migration event—HD 87978, HD 92577, HD 50669, HD 44006, HD 80790, LSPM J2126+5338, LSPM J0646+1829 and HD 192486. Among host stars of known planets, the stars GJ 433 and HR 858 are the best candidates.


Author(s):  
Hugh S. Hudson

The Carrington event in 1859, a solar flare with an associated geomagnetic storm, has served as a prototype of possible superflare occurrence on the Sun. Recent geophysical (14C signatures in tree rings) and precise time-series photometry [the bolometric total solar irradiance (TSI) for the Sun, and the broadband photometry from Kepler and Transiting Exoplanet Survey Satellite, for the stars] have broadened our perspective on extreme events and the threats that they pose for Earth and for Earth-like exoplanets. This review assesses the mutual solar and/or stellar lessons learned and the status of our theoretical understanding of the new data, both stellar and solar, as they relate to the physics of the Carrington event. The discussion includes the event's implied coronal mass ejection, its potential “solar cosmic ray” production, and the observed geomagnetic disturbances based on the multimessenger information already available in that era. Taking the Carrington event as an exemplar of the most extreme solar event, and in the context of our rich modern knowledge of solar flare and/or coronal mass ejection events, we discuss the aspects of these processes that might be relevant to activity on solar-type stars, and in particular their superflares. ▪ The Carrington flare of 1859, though powerful, did not significantly exceed the magnitudes of the greatest events observed in the modern era. ▪ Stellar “superflare” events on solar-type stars may share common paradigms, and also suggest the possibility of a more extreme solar event at some time in the future. ▪ We benefit from comparing the better-known microphysics of solar flares and CMEs with the diversity of related stellar phenomena. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Bengt Gustafsson ◽  
Jorge Meléndez ◽  
Martin Asplund ◽  
David Yong

Sign in / Sign up

Export Citation Format

Share Document