Large-Scale Coronal Magnetic Field and Density Structures

1994 ◽  
Vol 144 ◽  
pp. 155-157
Author(s):  
S. Gibson ◽  
F. Bagenal

AbstractWe have modelled the large-scale magnetic field and density structures in the corona using the magnetostatic model of Bogdan and Low (1986) and white light images from both NASA’s Solar Maximum Mission (SMM) Coronagraph/Polarimeter and the High Altitude Observatory Mark III (MkIII) K-coronameter (Bagenal and Gibson, 1991; Gibson and Bagenal, 1992.)We have used the magnetostatic model to calculate the magnetic field, density, pressure, and temperature distribution in the corona. Moreover, we have studied how, if at all, photospheric magnetic field observations could be used to improve predictions of coronal fields.We are at present examining the implications of our predictions of magnetic field and density structures have for coronal heating and solar wind acceleration. We are also analysing the robustness of these predictions, studying both observational and model related errors.

1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2008 ◽  
Vol 4 (S259) ◽  
pp. 75-80 ◽  
Author(s):  
Roland Kothes ◽  
Jo-Anne Brown

AbstractAs Supernova remnants expand, their shock waves are freezing in and compressing the magnetic field lines they encounter; consequently we can use Supernova remnants as magnifying glasses for their ambient magnetic fields. We will describe a simple model to determine emission, polarization, and rotation measure characteristics of adiabatically expanding Supernova remnants and how we can exploit this model to gain information about the large scale magnetic field in our Galaxy. We will give two examples: The SNR DA530, which is located high above the Galactic plane, reveals information about the magnetic field in the halo of our Galaxy. The SNR G182.4+4.3 is located close to the anti-centre of our Galaxy and reveals the most probable direction where the large-scale magnetic field is perpendicular to the line of sight. This may help to decide on the large-scale magnetic field configuration of our Galaxy. But more observations of SNRs are needed.


1991 ◽  
Vol 130 ◽  
pp. 187-189
Author(s):  
V.N. Krivodubskij ◽  
A.E. Dudorov ◽  
A.A. Ruzmaikin ◽  
T.V. Ruzmaikina

Analysis of the fine structure of the solar oscillations has enabled us to determine the internal rotation of the Sun and to estimate the magnitude of the large-scale magnetic field inside the Sun. According to the data of Duvall et al. (1984), the core of the Sun rotates about twice as fast as the solar surface. Recently Dziembowski et al. (1989) have showed that there is a sharp radial gradient in the Sun’s rotation at the base of the convection zone, near the boundary with the radiative interior. It seems to us that the sharp radial gradients of the angular velocity near the core of the Sun and at the base of the convection zone, acting on the relict poloidal magnetic field Br, must excite an intense toroidal field Bф, that can compensate for the loss of the magnetic field due to magnetic buoyancy.


1983 ◽  
Vol 102 ◽  
pp. 473-477
Author(s):  
H. Biernat ◽  
N. Kömle ◽  
H. Rucker

In the vicinity of the Sun — especially above coronal holes — the magnetic field lines show strong non-radial divergence and considerable curvature (see e.g. Kopp and Holzer, 1976; Munro and Jackson, 1977; Ripken, 1977). In the following we study the influence of these characteristics on the expansion velocity of the solar wind.


2004 ◽  
Vol 11 (4) ◽  
pp. 441-445 ◽  
Author(s):  
L. F. Burlaga

Abstract. During 2002, the Voyager 1 spacecraft was in the heliosphere between 83.4 and 85.9AU (1AU is the mean distance from the Sun to Earth) at 34° N heliographic latitude. The magnetic field strength profile observed in this region had a multifractal structure in the range of scales from 2 to 16 days. The multifractal spectrum observed near 85AU is similar to that observed near 40AU, indicating relatively little evolution of the multifractal structure of the magnetic field with increasing distance in the distant heliosphere in the epoch near solar maximum.


2010 ◽  
Vol 6 (S271) ◽  
pp. 407-408
Author(s):  
Jörn Warnecke ◽  
Axel Brandenburg

Abstractwe investigate the emergence of a large-scale magnetic field. This field is dynamo-generated by turbulence driven with a helical forcing function. Twisted arcade-like field structures are found to emerge in the exterior above the turbulence zone. Time series of the magnetic field structure show recurrent plasmoid ejections.


2008 ◽  
Vol 4 (S259) ◽  
pp. 509-514 ◽  
Author(s):  
Volker Heesen ◽  
M. Krause ◽  
R. Beck ◽  
R.-J. Dettmar

AbstractWe present radio continuum polarimetry observations of the nearby edge-on galaxy NGC 253 which possesses a very bright radio halo. Using the vertical synchrotron emission profiles and the lifetimes of cosmic-ray electrons, we determined the cosmic-ray bulk speed as 300±30 km s−1, indicating the presence of a galactic wind in this galaxy. The large-scale magnetic field was decomposed into a toroidal axisymmetric component in the disk and a poloidal component in the halo. The poloidal component shows a prominent X-shaped magnetic field structure centered on the nucleus, similar to the magnetic field observed in other edge-on galaxies. Faraday rotation measures indicate that the poloidal field has an odd parity (antisymmetric). NGC 253 offers the possibility to compare the magnetic field structure with models of galactic dynamos and/or galactic wind flows.


1990 ◽  
Vol 140 ◽  
pp. 187-196 ◽  
Author(s):  
M. Krause

After a brief historical summary of radio observations of spiral galaxies I review the methods of analyzing radio polarization data in view of the magnetic field. Special attention is drawn to the Faraday rotation and depolarization effects and to the identification of the large-scale magnetic field structure. The present observational results and open questions are discussed in terms of the predictions of the dynamo theory and prospects on future work are given.


2019 ◽  
Vol 627 ◽  
pp. A9 ◽  
Author(s):  
C. Sasso ◽  
R. F. Pinto ◽  
V. Andretta ◽  
R. A. Howard ◽  
A. Vourlidas ◽  
...  

The magnetic field shapes the structure of the solar corona, but we still know little about the interrelationships between the coronal magnetic field configurations and the resulting quasi-stationary structures observed in coronagraphic images (such as streamers, plumes, and coronal holes). One way to obtain information on the large-scale structure of the coronal magnetic field is to extrapolate it from photospheric data and compare the results with coronagraphic images. Our aim is to verify whether this comparison can be a fast method to systematically determine the reliability of the many methods that are available for modeling the coronal magnetic field. Coronal fields are usually extrapolated from photospheric measurements that are typically obtained in a region close to the central meridian on the solar disk and are then compared with coronagraphic images at the limbs, acquired at least seven days before or after to account for solar rotation. This implicitly assumes that no significant changes occurred in the corona during that period. In this work, we combine images from three coronagraphs (SOHO/LASCO-C2 and the two STEREO/SECCHI-COR1) that observe the Sun from different viewing angles to build Carrington maps that cover the entire corona to reduce the effect of temporal evolution to about five days. We then compare the position of the observed streamers in these Carrington maps with that of the neutral lines obtained from four different magnetic field extrapolations to evaluate the performances of the latter in the solar corona. Our results show that the location of coronal streamers can provide important indications to distinguish between different magnetic field extrapolations.


2000 ◽  
Vol 179 ◽  
pp. 161-162
Author(s):  
V. I. Makarov ◽  
A. G. Tlatov

Extended abstractWe report on the correlation between the large scale magnetic field and sunspot cycles during the last 80 years that was found by Makarovet al. (1999) and Makarov & Tlatov (2000) in H-αspherical harmonics of the large scale magnetic field for 1915–1999. The sum of intensities of the low modes 1 = 1 and 3, A(t), was used for comparison with the Wolf number, W(t). It was shown that the large scale magnetic field cycles, A(t), precede the sunspot cycles, W(t), by 5.5 years.Let us consider the behaviour in time of the harmonics with low numbers 1 = 1 and 1 = 3. The radial component B(r) of the magnetic field may be expanded in terms of the spherical harmonicswhereθandϕare the latitude and longitude,are Legendre polynomials andandare coefficients of expansion on the spherical functions.The magnetic moments of a dipole (1 = 1) and an octopole (1 = 3) are determined by the following equations:Let us enter the parameter describing their intensity,


Sign in / Sign up

Export Citation Format

Share Document