scholarly journals On the Number of Isolating Integrals in Systems with Three Degrees of Freedom

1971 ◽  
Vol 10 ◽  
pp. 110-117
Author(s):  
Claude Froeschle

AbstractDynamical systems with three degrees of freedom can be reduced to the study of a four-dimensional mapping. We consider here, as a model problem, the mapping given by the following equations: We have found that as soon as b ≠ 0, i.e. even for a very weak coupling, a dynamical system with three degrees of freedom has in general either two or zero isolating integrals (besides the usual energy integral).

2018 ◽  
Vol 27 (07) ◽  
pp. 1850066
Author(s):  
Payel Mukhopadhyay ◽  
K. Rajesh Nayak

Carter's constant is a nontrivial conserved quantity of motion of a particle moving in stationary axisymmetric spacetime. In the version of the theorem originally given by Carter, due to the presence of two Killing vectors, the system effectively has two degrees of freedom. We propose an extension to the first version of Carter's theorem to a system having three degrees of freedom to find two functionally independent Carter-like integrals of motion. We further generalize the theorem to a dynamical system with [Formula: see text] degrees of freedom. We further study the implications of Carter's constant to superintegrability and present a different approach to probe a superintegrable system. Our formalism gives another viewpoint to a superintegrable system using the simple observation of separable Hamiltonian according to Carter's criteria. We then give some examples by constructing some two-dimensional superintegrable systems based on this idea and also show that all three-dimensional simple classical superintegrable potentials are also Carter separable.


Author(s):  
S. M. Cox ◽  
A. J. Roberts

AbstractCentre manifolds arise in a rational approach to the problem of forming low-dimensional models of dynamical systems with many degrees of freedom. When a dynamical system with a centre manifold is subject to a small forcing, F, there are two effects: to displace the centre manifold; and to alter the evolution thereon. We propose a formal scheme for calculating the centre manifold of such a forced dynamical system. Our formalism permits the calculation of these effects, with errors of order |F|2. We find that the displacement of the manifold allows a reparameterisation of its description, and we describe two “natural” ways in which this can be carried out. We give three examples: an introductory example; a five-mode model of the atmosphere to display the quasi-geostrophic approximation; and the forced Kuramoto-Sivashinsky equation.


1974 ◽  
Vol 62 ◽  
pp. 297-310
Author(s):  
C. Froeschlé ◽  
J.-P. Scheidecker

We continue to study the number of isolating integrals in dynamical systems with three and four degrees of freedom, using as models the measure preserving mappings T already introduced in previous papers (Froeschlé, 1972; Froeschlé and Scheidecker, 1973a).Thus, we use here a new numerical method which enables us to take as indicator of stochasticity the variation with n of the two (respectively three) largest eigenvalues - in absolute magnitude - of the linear tangential mapping Tn∗ of Tn. This variation appears to be a very good tool for studying the diffusion process which occurs during the disappearance of the isolating integrals, already shown in a previous paper (Froeschlé, 1971). In the case of systems with three degrees of freedom, we define and give an estimation of the diffusion time, and show that the gambler's ruin model is an approximation of this diffusion process.


2005 ◽  
Vol 11 (4) ◽  
pp. 493-512 ◽  
Author(s):  
Martin N. Jacobi

This article is concerned with defining and characterizing hierarchical structures in smooth dynamical systems. We define transitions between levels in a dynamical hierarchy by smooth projective maps from a phase space on a lower level, with high dimensionality, to a phase space on a higher level, with lower dimensionality. It is required that each level describe a self-contained deterministic dynamical system. We show that a necessary and sufficient condition for a projective map to be a transition between levels in the hierarchy is that the kernel of the differential of the map is tangent to an invariant manifold with respect to the flow. The implications of this condition are discussed in detail. We demonstrate two different causal dependences between degrees of freedom, and how these relations are revealed when the dynamical system is transformed into global Jordan form. Finally these results are used to define functional components on different levels, interaction networks, and dynamical hierarchies.


1971 ◽  
Vol 17 (3) ◽  
pp. 241-244
Author(s):  
C. D. Collinson

Kilmister (1) has discussed the existence of linear integrals of a dynamical system specified by generalized coordinates qα(α = 1, 2, …, n) and a Lagrangianrepeated indices being summed from 1 to n. He derived covariant conditions for the existence of such an integral, conditions which do not imply the existence of an ignorable coordinate. Boyer (2) discussed the conditions and found the most general Lagrangian satisfying the conditions for the case of two degrees of freedom (n = 2).


2021 ◽  
Vol 11 (24) ◽  
pp. 11943
Author(s):  
Wael S. Amer ◽  
Tarek S. Amer ◽  
Seham S. Hassan

The focus of this article is on the investigation of a dynamical system consisting of a linear damped transverse tuned-absorber connected with a non-linear damped-spring-pendulum, in which its hanged point moves in an elliptic path. The regulating system of motion is derived using Lagrange’s equations, which is then solved analytically up to the third approximation employing the approach of multiple scales (AMS). The emerging cases of resonance are categorized according to the solvability requirements wherein the modulation equations (ME) have been found. The stability areas and the instability ones are examined utilizing the Routh–Hurwitz criteria (RHC) and analyzed in line with the solutions at the steady state. The obtained results, resonance responses, and stability regions are addressed and graphically depicted to explore the positive influence of the various inputs of the physical parameters on the rheological behavior of the inspected system. The significance of the present work stems from its numerous applications in theoretical physics and engineering.


Sign in / Sign up

Export Citation Format

Share Document