Earth-based observations of impact phenomena
Earth-based observations at near- and mid-infrared wavelengths were obtained for at least 15 of the SL9 impacts, ranging from the spectacular G, K and L events to the barely-detected N and V impacts. Although there were a few exceptions, most of the IR lightcurves fit a common pattern of one or two relatively faint precursor flashes, followed several minutes later by the main infrared event as the explosively-ejected plume crashed down onto the jovian atmosphere. Correlations with the impact times recorded by the Galileo spacecraft and plumes imaged by the Hubble Space Telescope lead to an interpretation of the twin precursors in terms of (i) the entry of the bolide into the upper atmosphere, and (ii) the re-appearance of the rising fireball above Jupiter's limb. Positive correlations are observed between the peak IR flux observed during the splashback phase and both pre-impact size estimates for the individual SL9 fragments and the scale of the resulting ejecta deposits. None of the fragments observed to have moved off the main train of the comet by May 1994 produced a significant impact signature. Earth-based fireball temperature estimates are on the order of 750 K, 30-60 sec after impact. For the larger impacts, the unexpectedly protracted fireball emission at 2.3 μm remains unexplained. A wide range of temperatures has been inferred for the splashback phase, where shocks are expected to have heated the re-entering plume material at least briefly to several thousand K, and further modelling is required to reconcile these data.