scholarly journals Annual Salt and Energy Budget Beneath an Antarctic Fast Ice Cover

1985 ◽  
Vol 6 ◽  
pp. 182-186 ◽  
Author(s):  
Ian Allison ◽  
C. M. Tivendale ◽  
G. R. Copson

Water temperature and salinity profiles were measured to a depth of 300 m below a fast ice cover near Mawson, Antarctica over a full annual cycle. Together with measurements of ice thickness and salinity, they are used to determine the heat and salt balance of the ice/ocean system at this site. The energy balance of the ocean is related to measured energy fluxes at the surface.Throughout the winter there is a net advection of salty water to the site which enhances the salinity increase in the water due to brine ejected from ice. After the ice reaches its maximum thickness there is considerable advection of warmer water which both raises the water temperature at the site and provides heat for the large oceanic heat flux previously reported for Mawson. The rate of this heat advection increases as the ice extent around Antarctica decreases. The ice partially meltsin situand breaks out in mid January. This effective removal of fresh water is balanced by a large influx of melt water from the continental ice sheet. The fresh water, initially near the surface, becomes well mixed to depths of greater than 200 m by strong storms in the ice free period from mid January to early April.

1985 ◽  
Vol 6 ◽  
pp. 182-186
Author(s):  
Ian Allison ◽  
C. M. Tivendale ◽  
G. R. Copson

Water temperature and salinity profiles were measured to a depth of 300 m below a fast ice cover near Mawson, Antarctica over a full annual cycle. Together with measurements of ice thickness and salinity, they are used to determine the heat and salt balance of the ice/ocean system at this site. The energy balance of the ocean is related to measured energy fluxes at the surface.Throughout the winter there is a net advection of salty water to the site which enhances the salinity increase in the water due to brine ejected from ice. After the ice reaches its maximum thickness there is considerable advection of warmer water which both raises the water temperature at the site and provides heat for the large oceanic heat flux previously reported for Mawson. The rate of this heat advection increases as the ice extent around Antarctica decreases. The ice partially melts in situ and breaks out in mid January. This effective removal of fresh water is balanced by a large influx of melt water from the continental ice sheet. The fresh water, initially near the surface, becomes well mixed to depths of greater than 200 m by strong storms in the ice free period from mid January to early April.


2016 ◽  
Vol 20 (5) ◽  
pp. 1681-1702 ◽  
Author(s):  
Madeline R. Magee ◽  
Chin H. Wu ◽  
Dale M. Robertson ◽  
Richard C. Lathrop ◽  
David P. Hamilton

Abstract. The one-dimensional hydrodynamic ice model, DYRESM-WQ-I, was modified to simulate ice cover and thermal structure of dimictic Lake Mendota, Wisconsin, USA, over a continuous 104-year period (1911–2014). The model results were then used to examine the drivers of changes in ice cover and water temperature, focusing on the responses to shifts in air temperature, wind speed, and water clarity at multiyear timescales. Observations of the drivers include a change in the trend of warming air temperatures from 0.081 °C per decade before 1981 to 0.334 °C per decade thereafter, as well as a shift in mean wind speed from 4.44 m s−1 before 1994 to 3.74 m s−1 thereafter. Observations show that Lake Mendota has experienced significant changes in ice cover: later ice-on date(9.0 days later per century), earlier ice-off date (12.3 days per century), decreasing ice cover duration (21.3 days per century), while model simulations indicate a change in maximum ice thickness (12.7 cm decrease per century). Model simulations also show changes in the lake thermal regime of earlier stratification onset (12.3 days per century), later fall turnover (14.6 days per century), longer stratification duration (26.8 days per century), and decreasing summer hypolimnetic temperatures (−1.4 °C per century). Correlation analysis of lake variables and driving variables revealed ice cover variables, stratification onset, epilimnetic temperature, and hypolimnetic temperature were most closely correlated with air temperature, whereas freeze-over water temperature, hypolimnetic heating, and fall turnover date were more closely correlated with wind speed. Each lake variable (i.e., ice-on and ice-off dates, ice cover duration, maximum ice thickness, freeze-over water temperature, stratification onset, fall turnover date, stratification duration, epilimnion temperature, hypolimnion temperature, and hypolimnetic heating) was averaged for the three periods (1911–1980, 1981–1993, and 1994–2014) delineated by abrupt changes in air temperature and wind speed. Average summer hypolimnetic temperature and fall turnover date exhibit significant differences between the third period and the first two periods. Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice thickness) exhibit an abrupt change after 1994, which was related in part to the warm El Niño winter of 1997–1998. Under-ice water temperature, freeze-over water temperature, hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a significant difference in the third period (1994–2014), when air temperature was warmest and wind speeds decreased rather abruptly. The trends in ice cover and water temperature demonstrate responses to both long-term and abrupt changes in meteorological conditions that can be complemented with numerical modeling to better understand how these variables will respond in a future climate.


2018 ◽  
Author(s):  
Daniel Price ◽  
Iman Soltanzadeh ◽  
Wolfgang Rack

Abstract. Knowledge of the snow depth distribution on Antarctic sea ice is poor but is critical to obtaining sea ice thickness from satellite altimetry measurements of freeboard. We examine the usefulness of various snow products to provide snow depth information over Antarctic fast ice with a focus on a novel approach using a high-resolution numerical snow accumulation model (SnowModel). We compare this model to results from ECMWF ERA-Interim precipitation, EOS Aqua AMSR-E passive microwave snow depths and in situ measurements at the end of the sea ice growth season. The fast ice was segmented into three areas by fastening date and the onset of snow accumulation was calibrated to these dates. SnowModel falls within 0.02 m snow water equivalent (swe) of in situ measurements across the entire study area, but exhibits deviations of 0.05 m swe from these measurements in the east where large topographic features appear to have caused a positive bias in snow depth. AMSR-E provides swe values half that of SnowModel for the majority of the sea ice growth season. The coarser resolution ERA-Interim, not segmented for sea ice freeze up area reveals a mean swe value 0.01 m higher than in situ measurements. These various snow datasets and in situ information are used to infer sea ice thickness in combination with CryoSat-2 (CS-2) freeboard data. CS-2 is capable of capturing the seasonal trend of sea ice freeboard growth but thickness results are highly dependent on the assumptions involved in separating snow and ice freeboard. With various assumptions about the radar penetration into the snow cover, the sea ice thickness estimates vary by up to 2 m. However, we find the best agreement between CS-2 derived and in situ thickness when a radar penetration of 0.05-0.10 m into the snow cover is assumed.


Author(s):  
S. V. Hotchenkov

Variability of the stages of sea ice development in the Laptev Sea is assessed with 10-days periodicity for the autumn — winter period on a basis of AARI digital ice charts for 1997–2017. Difference in formation of the stages of ice development (ice thickness) was revealed between the drifting and fast ice, which is manifested in an earlier appearance of the first-year ice for the fast ice area and in its partial concentration. On average, the ice cover of the Laptev Sea is by 60 % composed of thick first-year ice, most of which is formed within the fast ice area — 38%, while the area of drifting ice is 1,5 times larger.


Author(s):  
V. M. Stepanenko ◽  
I. A. Repina ◽  
G. Ganbat ◽  
G. Davaa

A new version of 1D thermodynamic and hydrodynamic model LAKE 2.1 is presented. The model is supplemented with description of dynamics and vertical distribution of salinity in ice layer. Simulation results are compared to in situ and satellite data on water temperature and ice cover at Lake Uvs (Mongolia) from 2000 to 2015. We demonstrate that underestimation of mixed-layer depth by the model with standard k–ε closure during summer and autumn leads to significant shift of ice-on to earlier dates. If the effects of water salinity are neglected in the model, ice cover establishes 16–17 before the observed dates. This error is removed, if influence of salinity on water density and freezing point is included, still assuming the fresh ice. However, in this case, LAKE model underestimates the maximal winter ice thickness on average by ≈0.2 m. In turn, this discrepancy decreases an order of magnitude if dynamics and vertical distribution of salinity in ice are reproduced. Such an effect does not take place when using constant salinity value in ice.


2016 ◽  
Author(s):  
M. R. Magee ◽  
C. H. Wu ◽  
D. M. Robertson ◽  
R. C. Lathrop ◽  
D. P. Hamilton

Abstract. The one-dimensional hydrodynamic-ice model, DYRESM-WQ-I, was modified to simulate ice cover and thermal structure of dimictic Lake Mendota, WI, USA, over a continuous 104-year period (1911–2014). The model results were then used to examine the drivers of changes in ice cover and water temperature, focusing on the responses to shifts in air temperature, wind speed, and water clarity at multi-year time scales. Observations of the drivers include a change in the trend of warming air temperatures from 0.081 °C per decade before 1981 to 0.334 °C per decade thereafter, as well as a shift in mean wind speed from 4.44 m s−1 to 3.74 m s−1 in 1994. Observations show that Lake Mendota has experienced significant changes in ice cover: later ice on (9.0 days later per century), earlier ice-off (12.3 days per century), decreasing ice cover duration (21.3 days per century), while model simulations indicate a change in maximum ice thickness (12.7 cm decrease per century). Model simulations also show changes in the lake thermal regime of: earlier stratification onset (12.3 days per century), later fall turnover (14.6 days per century), longer stratification duration (26.8 days per century), and decreasing summer hypolimnetic temperatures (−1.4 C per century). Correlation analysis of lake variables and driving variables revealed ice cover variables, stratification onset, epilimnetic temperature, and hypolimnetic temperature were most closely correlated with air temperature, whereas freeze-over water temperature, hypolimnetic heating, and fall turnover date were more closely correlated with wind speed. Each lake variable (i.e., ice-on and ice-off dates, ice cover duration, maximum ice thickness, freeze-over water temperature, stratification onset, fall turnover date, stratification duration, epilimnion temperature, hypolimnion temperature, and hypolimnetic heating) was averaged for the three periods (1911–1980, 1981–1993 and 1994–2014) delineated by abrupt changes in air temperature and wind speed. Average summer hypolimnetic temperature and fall turnover date exhibit significant differences between the third period and the first two periods. Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice thickness) exhibit an abrubt change after 1994 which was related in part to the warm El Niño winter of 1997–1998. Under-ice water temperature, freeze-over water temperature, hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a significant difference in the third period (1994–2014), when air temperature was warmest and wind speeds decreased rather abruptly. The trends in ice cover and water temperature demonstrate responses to both long-term and abrupt changes in meteorological conditions that can be complemented with numerical modelling to better understand how these variables will respond in a future climate.


2011 ◽  
Vol 5 (5) ◽  
pp. 2437-2463 ◽  
Author(s):  
P. Heil ◽  
S. Gerland ◽  
M. A. Granskog

Abstract. While Arctic and Antarctic fast-ice observations are required by a number of interest groups for planning and logistical activities, or to support scientific research, obtaining those data is not trivial. Sea-ice extent is reasonably well observed using camera-based or satellite-borne instruments, however, in situ and satellite-based ice-thicknesss measurements remain a challenge. As the seasonal fast-ice thickness is directly linked to regional atmospheric and oceanographic conditions, monitoring of fast-ice thickness across a station network around Antarctica and in the Arctic is crucial to assess how climate change affects the polar system. The Antarctic Fast-Ice Network (AFIN) was recently established to provide the scientific community with fast-ice observations from sites operated by international contributors. Based on AFIN data a recent increase in interannual variability in annual maximum ice and snow thicknesses has been identified. Maximum Arctic fast-ice thickness generally exhibits a similar interannual variability, however, both positive and negative trends in ice thickness have been observed in the Arctic. Comparing the two hemispheres, we find that in the Arctic the fast ice establishes itself at a faster rate than in the Antarctic, where repeated cyclone action tends to intermittently remove the fast ice during autumn. Also, Arctic sites investigated here exhibit less snow cover than those from East Antarctic coastal sites.


2012 ◽  
Vol 19 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Yinke Dou ◽  
Xiaomin Chang

Abstract Ice thickness is one of the most critical physical indicators in the ice science and engineering. It is therefore very necessary to develop in-situ automatic observation technologies of ice thickness. This paper proposes the principle of three new technologies of in-situ automatic observations of sea ice thickness and provides the findings of laboratory applications. The results show that the in-situ observation accuracy of the monitor apparatus based on the Magnetostrictive Delay Line (MDL) principle can reach ±2 mm, which has solved the “bottleneck” problem of restricting the fine development of a sea ice thermodynamic model, and the resistance accuracy of monitor apparatus with temperature gradient can reach the centimeter level and research the ice and snow substance balance by automatically measuring the glacier surface ice and snow change. The measurement accuracy of the capacitive sensor for ice thickness can also reach ±4 mm and the capacitive sensor is of the potential for automatic monitoring the water level under the ice and the ice formation and development process in water. Such three new technologies can meet different needs of fixed-point ice thickness observation and realize the simultaneous measurement in order to accurately judge the ice thickness.


1996 ◽  
Vol 33 (8) ◽  
pp. 71-77
Author(s):  
I. M.-C. Lo ◽  
H. M. Liljestrand ◽  
J. Khim ◽  
Y. Shimizu

Simple land disposal systems for hazardous and mixed wastes contain heavy metal cationic species through precipitation and ion exchange mechanisms but typically fail by releasing soluble organic and inorganic anionic species. To enhance the removal of anions from leachate, clays are modified with coatings of iron or aluminium cations to bridge between the anionic surface and the anionic pollutants. A competitive surface ligand exchange model indicates that surface coatings of 10 meq cation/gm montmorillonite under typical leachate conditions increase the inorganic anion sorption capacity by at least a factor of 6 and increase the intrinsic surface exchange constants by more than a factor of 100. Similarly, metal hydroxide coatings on montmorillonite increase the organic anion sorption capacity by a factor of 9 and increase the intrinsic surface exchange constants by a factor of 20. For historical concentrations of non-metal anions in US hazardous and mixed waste leachate, sorption onto natural clay liner materials is dominated by arsenate sorption. With cation coatings, anion exchange provides an effective removal for arsenate, selenate, phenols, cresols, and phthalates. Engineering applications are presented for the use of modified clays as in situ barriers to leachate transport of anionic pollutants as well as for above ground treatment of recovered leachate.


2020 ◽  
pp. 1-18
Author(s):  
Lander Van Tricht ◽  
Philippe Huybrechts ◽  
Jonas Van Breedam ◽  
Johannes J. Fürst ◽  
Oleg Rybak ◽  
...  

Abstract Glaciers in the Tien Shan mountains contribute considerably to the fresh water used for irrigation, households and energy supply in the dry lowland areas of Kyrgyzstan and its neighbouring countries. To date, reconstructions of the current ice volume and ice thickness distribution remain scarce, and accurate data are largely lacking at the local scale. Here, we present a detailed ice thickness distribution of Ashu-Tor, Bordu, Golubin and Kara-Batkak glaciers derived from radio-echo sounding measurements and modelling. All the ice thickness measurements are used to calibrate three individual models to estimate the ice thickness in inaccessible areas. A cross-validation between modelled and measured ice thickness for a subset of the data is performed to attribute a weight to every model and to assemble a final composite ice thickness distribution for every glacier. Results reveal the thickest ice on Ashu-Tor glacier with values up to 201 ± 12 m. The ice thickness measurements and distributions are also compared with estimates composed without the use of in situ data. These estimates approach the total ice volume well, but local ice thicknesses vary substantially.


Sign in / Sign up

Export Citation Format

Share Document