A three axis tactile sensor-probe for robotic use

Robotica ◽  
1986 ◽  
Vol 4 (4) ◽  
pp. 229-235 ◽  
Author(s):  
Štefan Havlík

SUMMARYThe paper deals with a three axis reaction force and displacement sensor. The design procedure of the strain gauges sensor for its intended application as a tactile proble is described. The deformable sensor body with strain gauges arrangement allows all three output voltage readings to be directly related with rectangular components of the force displacement vector in a remote contact reference system. The structural orthogonalisation that results in minimal cross component couplings is briefly outlined. The practical use of the designed probe is exemplified by seam following in a robotic welding system.

2016 ◽  
Vol 85 (7) ◽  
pp. 657-662
Author(s):  
Satoshi YAMANE

Author(s):  
Aaron T. O’Toole ◽  
Stephen L. Canfield

Skid steer tracked-based robots are popular due to their mechanical simplicity, zero-turning radius and greater traction. This architecture also has several advantages when employed by mobile platforms designed to climb and navigate ferrous surfaces, such as increased magnet density and low profile (center of gravity). However, creating a kinematic model for localization and motion control of this architecture is complicated due to the fact that tracks necessarily slip and do not roll. Such a model could be based on a heuristic representation, an experimentally-based characterization or a probabilistic form. This paper will extend an experimentally-based kinematic equivalence model to a climbing, track-based robot platform. The model will be adapted to account for the unique mobility characteristics associated with climbing. The accuracy of the model will be evaluated in several representative tasks. Application of this model to a climbing mobile robotic welding system (MRWS) is presented.


Author(s):  
Eiji Shirai ◽  
Tetsuya Zaitsu ◽  
Kazutoyo Ikeda ◽  
Toshiaki Yoshii ◽  
Masami Kondo ◽  
...  

At domestic PWR plants in Japan, one of the major key issues is earthquake-proof safety [1–3]. Recently, a design procedure using energy absorption, not conventional rigid design, was authorized according to revised review guidelines for aseismic design (JEAC4601). Therefore, we focused on the design technique that utilizes energy absorption effects to reduce the seismic responses of the piping system with U-Bolt, by the static and dynamic tests of simplified piping model supported by U-Bolt. The force-displacement characteristics and a fatigue diagram were obtained by the tests.


1987 ◽  
Vol 20 (12) ◽  
pp. 293-298
Author(s):  
M. Kvasnica ◽  
Š. Petráš ◽  
I. Kočiš

Author(s):  
HyeongJoon Ahn

Base vibration of a linear motor motion stage has been reduced with passive RFC mechanism based on movable magnet track and springs. This paper presents design procedure of an eddy-current damper (ECD) type RFC mechanism for a linear motor motion stage. The RFC mechanism with a movable magnet track and an ECD can overcome disadvantages of the spring based RFC mechanism such as resonance and difficulty of assembly due to spring. A lumped parameter model for the ECD type RFC mechanism is derived considering sinusoidal magnetic flux density and effective width of the ECD according to magnet track motion. Then, a design procedure for ECD type RFC mechanism is proposed to meet system requirements such as transmission ratio of reaction force and maximum magnet track motion. Design example illustrates the effectiveness of the proposed design procedure for ECD type RFC mechanism.


Sign in / Sign up

Export Citation Format

Share Document