Novel adaptive backstepping control for uncertain manipulator robots using state and output feedback
Abstract In this paper, a new adaptive control strategy, based on the Modified Function Approximation Technique, is proposed for a manipulator robot with unknown dynamics. This novel strategy benefits from the backstepping control approach and the use of state and output feedback. Unlike the conventional Function Approximation Technique approach, the use of basis functions to approximate the dynamic parameters is completely eliminated in the proposed scheme. Another improvement is eliminating the need to measure velocity by means of integrating a high-order sliding mode observer. Furthermore, utilizing the Lyapunov function theory, it is demonstrated that all controller signals are uniformly ultimately bounded in the closed-loop form. Lastly, simulation and comparative studies are carried out to validate the effectiveness of the proposed control approach.