Dynamic logarithmic state and control quantization for continuous-time linear systems
Abstract This paper addresses logarithmic quantizers with dynamic sensitivity design for continuous-time linear systems with a quantized feedback control law. The dynamics of state quantization and control quantization sensitivities during “zoom-in”/“zoom-out” stages are proposed. Dwell times of the dynamic sensitivities are co-designed. It is shown that with the proposed algorithm, a single-input continuous-time linear system can be stabilized by quantized feedback control via adopting sensitivity varying algorithm under certain assumptions. Also, the advantage of logarithmic quantization is sustained while achieving stability. Simulation results are provided to verify the theoretical analysis.