Regional geothermobarometry in the granulite facies terrane of South India

1983 ◽  
Vol 73 (4) ◽  
pp. 221-244 ◽  
Author(s):  
M. Raith ◽  
P. Raase ◽  
D. Ackermand ◽  
R. K. Lal

ABSTRACTIn the southern part of the Archaean craton of South India, an approximately 3.4–2.9 b.y. old migmatite–gneiss terrane (Peninsular gneiss complex) has been subjected to granulite facies metamorphism about 2.6 b.y. ago. During this event, the extensive charnockite-khondalite zone of southern India developed. A younger metamorphism (Proterozoic?) led to retrogression of the charnockites and khondalites, mainly under the conditions of the amphibolite facies.The physical conditions of metamorphism have been evaluated by applying methods of geothermobarometry to the widespread charnockitic assemblages with garnet, orthopyroxene, clinopyroxene, plagioclase, and quartz. The interpretation of the P–T estimates includes a critical discussion of potential error sources, e.g. errors of the analytical data and the calibrations of the models, and takes into account the complex metamorphic history of the rocks and the kinetics of the mineral equilibria.P-T estimates were obtained for seven subareas from the rim compositions of the coexisting minerals: Shevaroy Hills 680±55°C—7·4±1 kb; Kollaimalai area 680±40°C—8·6± 1 kb; Nilgiri Hills 680±90°C—6·6±0.8kb (upland massif) and 705±60°C—9·3±0.8 kb (northern margin); Bhavani Sagar area 650±50°C—7·2± 1 kb; Sargur-Mysore area 690±60°C—7·6 kb; Bangalore-Kunigal-Satnur area 760±50°C—6 kb. Except for the last subarea, the P-T model data reflect the conditions of a late annealing stage probably related to the retrogressive metamorphism. Conditions near the peak of granulite facies metamorphism (730–800°C—6·5–9·5 kb) are recorded by the core compositions of the minerals. Although a rather uniform cooling history of the main part of the charnockite-khondalite terrane is suggested from the temperature data, differential uplift of smaller blocks is indicated by the regional variation of the pressure data.

1987 ◽  
Vol 51 (360) ◽  
pp. 207-215 ◽  
Author(s):  
Ram S. Sharma ◽  
Jane D. Sills ◽  
M. Joshi

AbstractMetanorite dykes intrude the Banded Gneiss Complex at various places in Rajasthan, N.W. India. They show neither chilled margins nor gradational contacts with the country rock amphibolite or granulite facies gneisses. They have ophitic to subophitic texture with strongly zoned subcalcic clinopyroxene and orthopyroxene, olivine and plagioclase, with subsidiary biotite. During slow cooling a series of reaction coronas developed with garnet forming round biotite, ilmenite and orthopyroxene; hornblende round pyroxenes and orthopyroxene, hornblende ± spinel round olivine, which may be totally replaced. It is inferred that the dykes crystallised from a tholeiitic magma at about 1100-1150 °C and were intruded during the waning stages of granulite facies metamorphism. The corona minerals grew at about 650–700 °C. A series of reactions to account for the development of the coronas is proposed using measured mineral compositions. Although these reactions do not balance for individual corona formation, metamorphism was probably isochemical with Ca, Na, K, Ti, Si and H2O only mobile on the scale of a thin section. Si and H2O were possibly mobile on a larger scale.


1975 ◽  
Vol 12 (11) ◽  
pp. 1953-1955 ◽  
Author(s):  
Lincoln S. Hollister

Mineral assemblages diagnostic of the granulite facies of metamorphism occur between Terrace and Prince Rupert, British Columbia. The estimated pressure (5–8 kb) and temperature (750–850 °C) of metamorphism are important constraints in unravelling the geologic history of the Coast Range batholithic complex.


Author(s):  
Richard Volkert ◽  
John N. Aleinikoff

New zircon U–Pb geochronologic data from the Grenville-age Trenton Prong provide information on the age of magmatism, timing of metamorphism, and post-metamorphic history of the inlier. Diorite gneiss (1318 ± 13 Ma) of the Colonial Lake Suite temporally correlates to magmatic arc sequences that formed along the eastern margin of Laurentia at <1.4 Ga. Metasedimentary gneisses yielded detrital zircon ages of ca. 1319-1133 Ma and ca. 1370-1207, consistent with sediment derived from a similar local source of Laurentian affinity. A small population of zircon (either detrital or igneous in origin) in one sample yielded ages of ca. 1074-1037 Ma. Possible interpretations for their formation are explored. Ca. 1060 Ma overgrowths on zircon in the northern part of the inlier constrain the timing of granulite-facies metamorphism to the Ottawan phase of the Grenvillian Orogeny. The undeformed Assunpink Creek Granite (1041 ± 6 Ma) intruded country rocks as small bodies of late-orogenic syenogranite. It provides a minimum age for amphibolite-facies metamorphism and Ottawan orogenesis elsewhere in the inlier. Regionally, zircon rim ages of ca. 1010–960 Ma record continued thermal activity during the Rigolet phase of the orogen that resulted in migmatization of paragneiss at ca. 1004 Ma and juxtaposition of upper- and mid-crustal rocks during orogenic collapse. The lithologic ages and tectonic history of the Trenton Prong correlate to those in other Appalachian Mesoproterozoic inliers, and parts of the Canadian Grenville Province, confirming it is not an exotic terrane that was accreted to eastern Laurentia during Grenvillian orogenesis.


1968 ◽  
Vol 71 ◽  
pp. 1-47
Author(s):  
P.R Dawes

Metamorphosed rocks of three distinct episodes of basic intrusion can be recognised in the Precambrian basement of the Tasiussaq area, South Greenland. The oldest intrusions, represented by sills and dykes, are pyriclasites and biotitepyriclasites; the second episode intrusions, in the form of dykes, are pyroxenemetadolerites and the third episode intrusions, represented by dykes and small bodies, are metagabbros, metadolerites, metanorites and amphibolites. The metamorphic nature of the rocks of the three episodes is a reflection of age. Chemical and modal analyses of rocks from the three episodes are presented. Fresh diorite sills and dolerite dykes represent later episodes of Precambrian basic intrusion. The basic rocks depict the varying types of metamorphic conditions which affected the area in Precambrian time, and these are seen to differ from the established metamorphic history in areas to the north-west in South Greenland. The pyriclasites and biotite-pyriclasites have been derived through granulite facies metamorphism; the pyroxene-metadolerites by dipsenic metamorphism under conditions corresponding to the amphibolite facies and the metagabbros, metadolerites, metanorites and amphibolites through amphibolitisation during amphibolite facies metamorphism. It is suggested that the metamorphism producing the pyroxene-metadolerites (Sanerutian in age) was controlled by dipsenic conditions inherited from earlier granulite facies metamorphism (Ketilidian in age). This implies that the Ketilidian and Sanerutian metamorphisms in the Tasiussaq area are not separated by a long span of time and that the break in plutonism marked by the pyroxene-metadolerites cannot be regarded as a significant cratogenic hiatus between two separate plutonisms. The importance of water in controlling trends in the metamorphism of dolerites is stressed. The 1st episode intrusions have undergone severe changes since intrusion and no palimpsest features indicative of primary texture or mineralogy remain. The majority of the 2nd episode intrusions display a granular texture, but some display sub-ophitic and relic sub-ophitic textures. The 3rd episode intrusions display a range from ophitic, sub-ophitic and microporphyritic textures to relic stages of these textures. The 1st episode intrusions were emplaced into a geosynclinal pile of sediments and were probably connected with the volcanicity which occurred at the end of sedimentation. The 2nd and 3rd episode intrusions were emplaced into granitic and metamorphic rocks at a later stage in the same 'geological cycle'. Both the 2nd and 3rd episode intrusions are considered to indicate trends in the crust towards brittle conditions marking temporary partial withdrawals of the thermal front. Their preserved ophitic and sub-ophitic textures are not indicative of emplacement and crystallisation in cratogenic conditions.


2021 ◽  
Author(s):  
Yinbiao Peng ◽  
Yu Shengyao ◽  
et al.

Tables S1–S4: Representative electron microprobe data; Tables S5–S16: Zircon U‐Th‐Pb LA‐ICP‐MS data for nine representative samples; Tables S17–S22: LA‐MC‐ICP‐MS Lu‐Hf isotope data for 6 representative samples; Table S23: Major and trace element compositions of plutons and volcanic rocks.


Sign in / Sign up

Export Citation Format

Share Document