Natural Language Processing

1996 ◽  
Vol 16 ◽  
pp. 70-85 ◽  
Author(s):  
Thomas C. Rindflesch

Work in computational linguistics began very soon after the development of the first computers (Booth, Brandwood and Cleave 1958), yet in the intervening four decades there has been a pervasive feeling that progress in computer understanding of natural language has not been commensurate with progress in other computer applications. Recently, a number of prominent researchers in natural language processing met to assess the state of the discipline and discuss future directions (Bates and Weischedel 1993). The consensus of this meeting was that increased attention to large amounts of lexical and domain knowledge was essential for significant progress, and current research efforts in the field reflect this point of view.

2021 ◽  
Vol 3 ◽  
Author(s):  
Marieke van Erp ◽  
Christian Reynolds ◽  
Diana Maynard ◽  
Alain Starke ◽  
Rebeca Ibáñez Martín ◽  
...  

In this paper, we discuss the use of natural language processing and artificial intelligence to analyze nutritional and sustainability aspects of recipes and food. We present the state-of-the-art and some use cases, followed by a discussion of challenges. Our perspective on addressing these is that while they typically have a technical nature, they nevertheless require an interdisciplinary approach combining natural language processing and artificial intelligence with expert domain knowledge to create practical tools and comprehensive analysis for the food domain.


2021 ◽  
pp. 1063293X2098297
Author(s):  
Ivar Örn Arnarsson ◽  
Otto Frost ◽  
Emil Gustavsson ◽  
Mats Jirstrand ◽  
Johan Malmqvist

Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.


Author(s):  
Mans Hulden

Finite-state machines—automata and transducers—are ubiquitous in natural-language processing and computational linguistics. This chapter introduces the fundamentals of finite-state automata and transducers, both probabilistic and non-probabilistic, illustrating the technology with example applications and common usage. It also covers the construction of transducers, which correspond to regular relations, and automata, which correspond to regular languages. The technologies introduced are widely employed in natural language processing, computational phonology and morphology in particular, and this is illustrated through common practical use cases.


Author(s):  
Ayush Srivastav ◽  
Hera Khan ◽  
Amit Kumar Mishra

The chapter provides an eloquent account of the major methodologies and advances in the field of Natural Language Processing. The most popular models that have been used over time for the task of Natural Language Processing have been discussed along with their applications in their specific tasks. The chapter begins with the fundamental concepts of regex and tokenization. It provides an insight to text preprocessing and its methodologies such as Stemming and Lemmatization, Stop Word Removal, followed by Part-of-Speech tagging and Named Entity Recognition. Further, this chapter elaborates the concept of Word Embedding, its various types, and some common frameworks such as word2vec, GloVe, and fastText. A brief description of classification algorithms used in Natural Language Processing is provided next, followed by Neural Networks and its advanced forms such as Recursive Neural Networks and Seq2seq models that are used in Computational Linguistics. A brief description of chatbots and Memory Networks concludes the chapter.


2011 ◽  
Vol 181-182 ◽  
pp. 236-241
Author(s):  
Xian Yi Cheng ◽  
Chen Cheng ◽  
Qian Zhu

As a sort of formalizing tool of knowledge representation, Description Logics have been successfully applied in Information System, Software Engineering and Natural Language processing and so on. Description Logics also play a key role in text representation, Natural Language semantic interpretation and language ontology description. Description Logics have been logical basis of OWL which is an ontology language that is recommended by W3C. This paper discusses the description logic basic ideas under vocabulary semantic, context meaning, domain knowledge and background knowledge.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Graham Neubig ◽  
Patrick Littell ◽  
Chian-Yu Chen ◽  
Jean Lee ◽  
Zirui Li ◽  
...  

Language documentation is inherently a time-intensive process; transcription, glossing, and corpus management consume a significant portion of documentary linguists’ work. Advances in natural language processing can help to accelerate this work, using the linguists’ past decisions as training material, but questions remain about how to prioritize human involvement. In this extended abstract, we describe the beginnings of a new project that will attempt to ease this language documentation process through the use of natural language processing (NLP) technology. It is based on (1) methods to adapt NLP tools to new languages, based on recent advances in massively multilingual neural networks, and (2) backend APIs and interfaces that allow linguists to upload their data (§2). We then describe our current progress on two fronts: automatic phoneme transcription, and glossing (§3). Finally, we briefly describe our future directions (§4).


Sign in / Sign up

Export Citation Format

Share Document