Diffraction by a wave-guide of finite length

Author(s):  
D. S. Jones

AbstractWhen the electric intensities on two parallel planes, of which the two perfectly conducting sides of a wave-guide of finite length and infinite width are portions, are taken as unknowns, the problem of the diffraction of a plane harmonic electromagnetic wave polarized parallel to the edges of the guide leads to two integral equations. By means of the Laplace transform these equations are converted into others suitable for solution by successive substitutions. The series thus obtained is too complex for practical purposes, and so an approximate solution is found for the case when the length of the guide is large compared with the wavelength. Finally, there is a brief discussion of the difference between the distant fields when l is large and when l is infinite.

Author(s):  
Sapto W. Indratno ◽  
Alexander G. Ramm

A new method for inverting the Laplace transform from the real axis is formulated. This method is based on a quadrature formula. We assume that the unknown function is continuous with (known) compact support. An adaptive iterative method and an adaptive stopping rule, which yield the convergence of the approximate solution to , are proposed in this paper.


1991 ◽  
Vol 45 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Riccardo Croci

The purpose of this paper is to derive the asymptotic solutions to a class of inhomogeneous integral equations that reduce to algebraic equations when a parameter ε goes to zero (the kernel becoming proportional to a Dirac δ function). This class includes the integral equations obtained from the system of Vlasov and Poisson equations for the Fourier transform in space and the Laplace transform in time of the electrostatic potential, when the equilibrium magnetic field is uniform and the equilibrium plasma density depends on εx, with the co-ordinate z being the direction of the magnetic field. In this case the inhomogeneous term is given by the initial conditions and possibly by sources, and the Laplace-transform variable ω is the eigenvalue parameter.


1996 ◽  
Vol 33 (2) ◽  
pp. 368-381 ◽  
Author(s):  
C. Commault ◽  
J. P. Chemla

In this paper we consider phase-type distributions, their Laplace transforms which are rational functions and their representations which are finite-state Markov chains with an absorbing state. We first prove that, in any representation, the minimal number of states which are visited before absorption is equal to the difference of degree between denominator and numerator in the Laplace transform of the distribution. As an application, we prove that when the Laplace transform has a denominator with n real poles and a numerator of degree less than or equal to one the distribution has order n. We show that, in general, this result can be extended neither to the case where the numerator has degree two nor to the case of non-real poles.


2021 ◽  
Vol 11 (24) ◽  
pp. 11774
Author(s):  
Bin Zhen ◽  
Ran Liu

In this paper, a new method is proposed based on the auxiliary system approach to investigate generalized synchronization between two identical neurons with unidirectional coupling. Different from other studies, the synchronization error system between the response and auxiliary systems is converted into a set of Volterra integral equations according to the Laplace transform method and convolution theorem. By using the successive approximation method in the theory of integral equations, an analytical criterion for the detection of generalized synchronization between two identical neurons is obtained. It is found that there is a time difference between two signals of neurons when the generalized synchronization between them is achieved. Furthermore, the value of the time difference has no relation to the generalized synchronization condition but depends on the coupling function between two neurons. The study in this paper shows that one can construct a coupling function between two identical neurons using the current signal of the drive system to predict its future signal or make its past signal reappear.


Author(s):  
Ahmad M. Alenezi

In this paper, we present a new integral transform called Alenezi-transform in the category of Laplace transform. We investigate the characteristic of Alenezi-transform. We discuss this transform with the other transforms like J, Laplace, Elzaki and Sumudu transforms. We can demonstrate that Alenezi transforms are near to the condition of the Laplace transform. We can explain the new Properties of transforms using Alenezi transform. Alenezi transform can be applied to solve differential, Partial and integral equations.


Author(s):  
O Maksymovych ◽  
T Solyar ◽  
A Sudakov ◽  
I Nazar ◽  
M Polishchuk

Purpose. To develop an approach for determining the stress state of plate structural elements with holes under dynamic loads with controlled accuracy. Methodology. The study was carried out on the basis of the Laplace transform and the method of integral equations. Findings. An approach to determining the dynamic stresses at the holes in the plates is proposed, which includes: the Laplace transform in the time coordinate; a numerical method for determining transformants of displacements and stresses based on the method of integral equations; finding originals on the basis of Prudnikovs formula adapted to dynamic problems of elasticity theory. The problem of determining the Laplace images for displacements is reduced to solving singular integral equations. Integral equations were solved numerically based on the approaches developed in the boundary element method. To find displacements and stresses, the Laplace transform inversion formulas proposed by Prudnikov are adapted to dynamic problems. The study on dynamic stresses at holes of various shapes was carried out. Originality. A new approach to the regularization of the Prudnikov formula for inverting the Laplace transform as applied to dynamic problems of the theory of elasticity has been developed. For its implementation: convergence of Fourier series based on pre-set stresses at the initial time is improved; the remainder is taken into account in the conversion formula. Practical value. A method has been developed for calculating the stress concentration at holes of arbitrary shape in lamellar structural elements under dynamic loads. The proposed approach makes it possible to determine stresses with controlled accuracy. The studies performed at circular and polygonal holes with rounded tops can be used in strength calculations for dynamically loaded plates. The influence of Poissons ratio on the concentration of dynamic stresses is analyzed.


2019 ◽  
Vol 29 ◽  
pp. 1-14
Author(s):  
U. Filobello-Nino ◽  
H. Vazquez-Leal ◽  
A. L. Herrera-May ◽  
V. M. Jimenez-Fernandez ◽  
J. Cervantes-Perez ◽  
...  

This work introduces the Laplace Transform-Homotopy Perturbation Method (LT-HPM) in order to provide an approximate solution for Troesch’s problem. After comparing figures between exact and approximate solutions, as well as the average absolute relative error (AARE) of the approximate solutions of this research, with others reported in the literature, it can be said that the proposed solutions are accurate and handy. In conclusion, LT-HPM is a potentially useful tool.


Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 2869-2876
Author(s):  
H.M. Srivastava ◽  
Mohammad Masjed-Jamei ◽  
Rabia Aktaş

This article deals with a general class of differential equations and two general classes of integral equations. By using the Laplace transform and the Fourier transform, analytical solutions are derived for each of these classes of differential and integral equations. Some illustrative examples and particular cases are also considered. The various analytical solutions presented in this article are potentially useful in solving the corresponding simpler differential and integral equations.


Sign in / Sign up

Export Citation Format

Share Document