Topological decompositions of the duals of locally convex operator spaces

1983 ◽  
Vol 93 (2) ◽  
pp. 307-314 ◽  
Author(s):  
D. J. Fleming ◽  
D. M. Giarrusso

If Z and E are Hausdorff locally convex spaces (LCS) then by Lb(Z, E) we mean the space of continuous linear maps from Z to E endowed with the topology of uniform convergence on the bounded subsets of Z. The dual Lb(Z, E)′ will always carry the topology of uniform convergence on the bounded subsets of Lb(Z, E). If K(Z, E) is a linear subspace of L(Z, E) then Kb(Z, E) will be used to denote K(Z, E) with the relative topology and Kb(Z, E)″ will mean the dual of Kb(Z, E)′ with the natural topology of uniform convergence on the equicontinuous subsets of Kb(Z, E)′. If Z and E are Banach spaces these provide, in each instance, the usual norm topologies.

Author(s):  
Sadayuki Yamamuro

AbstractThe aim of this note is to investigate the structure of general surjectivity problem for a continuous linear map between locally convex spaces. We shall do so by using the method introduced in Yamamuro (1980). Its basic notion is that of calibrations which has been introduced in Yamamuro (1975), studied in detail in Yamamuro (1979) and appliced to several problems in Yamamuro (1978) and Yamamuro (1979a).


1984 ◽  
Vol 96 (2) ◽  
pp. 321-323 ◽  
Author(s):  
Jan H. Fourie ◽  
William H. Ruckle

AbstractLet E, F be Hausdorff locally convex spaces. In this note we consider conditions on E and F such that the dual space of the space Kb (E, F) (of quasi-compact operators) is a complemented subspace of the dual space of Lb (E, F) (of continuous linear operators). We obtain necessary and sufficient conditions for Lb(E, F) to be semi-reflexive.


1992 ◽  
Vol 34 (2) ◽  
pp. 175-188
Author(s):  
Neill Robertson

By the term “locally convex space”, we mean a locally convex Hausdorff topological vector space (see [17]). We shall denote the algebraic dual of a locally convex space E by E*, and its topological dual by E′. It is convenient to think of the elements of E as being linear functionals on E′, so that E can be identified with a subspace of E′*. The adjoint of a continuous linear map T:E→F will be denoted by T′:F′→E′. If 〈E, F〈 is a dual pair of vector spaces, then we shall denote the corresponding weak, strong and Mackey topologies on E by α(E, F), β(E, F) and μ(E, F) respectively.


1971 ◽  
Vol 14 (1) ◽  
pp. 119-120 ◽  
Author(s):  
Robert H. Lohman

A well-known embedding theorem of Banach and Mazur [1, p. 185] states that every separable Banach space is isometrically isomorphic to a subspace of C[0, 1], establishing C[0, 1] as a universal separable Banach space. The embedding theorem one encounters in a course in topological vector spaces states that every Hausdorff locally convex space (l.c.s.) is topologically isomorphic to a subspace of a product of Banach spaces.


1973 ◽  
Vol 14 (2) ◽  
pp. 105-110 ◽  
Author(s):  
S. O. Iyahen ◽  
J. O. Popoola

In the usual definition of an inductive limit of locally convex spaces, one is given a linear space E, a family (Eα) of locally convex spaces and a set (iα) of linear maps from Eα into E. Garling in [2] studies an extension of this, looking at absolutely convex subsets Sα of Eα and restrictions jα of iα to such sets. If, in the definition of Garling [2, p. 3], each Sα is instead a balanced semiconvex set, then the finest linear (not necessarily locally convex) topology on E for which the maps ja are continuous, will be referred to as the generalized *-inductive limit topology of the semiconvex sets. This topology is our object of study in the present paper; we find applications in the closed graph theorem.


1970 ◽  
Vol 3 (3) ◽  
pp. 385-390
Author(s):  
G. Davis

If E, F are regularly ordered vector spaces the tensor product E ⊗ F can be ordered by the conic hull Kπ of tensors, x ⊗ y with x ≥ 0 in E and y ≥ 0 in F, or by the cone K⊗ of tensors Φ ∈ E ⊗ F such that Φ(x′, y′) ≥ 0 for positive linear functionals x′, y′ on E, F.If E, F are locally convex spaces the tensor product can te given the π-topology which is defined by seminorms pα ⊕ qβ where {pα}, {qβ} are classes of seminorms defining the topologies on E, F. The tensor product can also be given the ε-topology which is the topology of uniform convergence on equicontinuous subsets J x H of E′ x F′. The main result of this note is that if the regularly ordered vector spaces E, F carry their order topologies then the order topology on E ⊕ F is the π-topology when E ⊕ F is ordered by kπ, and the ε-topology when E ⊕ F is ordered by K⊕.


1976 ◽  
Vol 15 (1) ◽  
pp. 65-72
Author(s):  
Grigore Călugăreanu

In an additive category A0, objects are said to be determined by their rings of endomorphisms if for each ring-isomorphism F of the rings of endomorphisms of two objects A, B in A0 there is an isomorphism f: A → B in A0 such that F(α) = fαf-1, for every endomorphism α of A. Considering.this problem in the context of closed categories (in Eilenberg and Kelly's sense), the author proves a general theorem which generalises results of Eidelheit (for real Banach spaces) and of Kasahara (for real locally convex spaces).


1994 ◽  
Vol 62 (5) ◽  
pp. 459-461 ◽  
Author(s):  
Klaus Floret ◽  
Heinz K�nig

1974 ◽  
Vol 26 (6) ◽  
pp. 1294-1300 ◽  
Author(s):  
Joel H. Shapiro

It is well-known that every weak basis in a Fréchet space is actually a basis. This result, called the weak basis theorem was first given for Banach spaces in 1932 by Banach [1, p. 238], and extended to Fréchet spaces by Bessaga and Petczynski [3]. McArthur [12] proved an analogue for bases of subspaces in Fréchet spaces, and recently W. J. Stiles [18, Corollary 4.5, p. 413] showed that the theorem fails in the non-locally convex spaces lp (0 < p < 1). The purpose of this paper is to prove the following generalization of Stiles' result.


Sign in / Sign up

Export Citation Format

Share Document