scholarly journals High-Dose Methylprednisolone Reduces Cytokine-Induced Adhesion Molecules on Human Brain Endothelium

Author(s):  
Maurizio Gelati ◽  
Elena Corsini ◽  
Anna Dufour ◽  
Giorgio Massa ◽  
Sergio Giombini ◽  
...  

Objective:We investigated the in vitro effects of low- and high-dose methylprednisolone (MP) on the cytokine-induced expression of HLA-DR, ICAM-1 and VCAM-1 on human brain microvessel endothelial cells (HBMECs).Methods:Brain endothelium was obtained from microvessels included in the apparently normal white matter of surgical specimens of nine patients. Cells were stained with monoclonal antibodies anti-HLA-DR, anti-ICAM-1 and anti-VCAM-1 and analysed by flow cytometry as fluorescence histograms. The mean fluorescence intensity (MFI) of HBMECs treated with different stimuli was calculated.Results:3-IFN-induced HLA-DR was down-regulated in a dose-dependent manner by MP. High-dose MP reduced the TNF-3-induced ICAM-1 and VCAM-1 expression.Conclusion:The down-regulation of adhesion molecules on cerebral endothelial cells could decrease mononuclear cell transmigration through the blood brain barrier and consequently the perivascular infiltrates. The results add support to the rationale for high-dose MP treatment in multiple sclerosis relapses.

2020 ◽  
Author(s):  
Zhenzhen Zhang ◽  
Chuandi Zhou ◽  
Deji Draga ◽  
lhamo Thashi ◽  
Zhi Zheng ◽  
...  

Abstract Background: LingqiHuangban Granule(LQHBG) is a famous traditional Chinese medicine formula used to manage retinal diseases, as an effective holistic treatment through warming Yang to exert tonifying effects on kidney and invigorating spleen to remove dampness to nourish essence of effect. The study examined protection of LQHBG on oxidative stress-induced injury in human retinal endothelial cells(HRECs) in vitro, determined the potential molecular targets of LQHBG using network pharmacology.Methods: The potential targets of active ingredients in LQHBG were predicted using pharmmapper. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out using Molecule Annotation System. The protein-protein interaction networks were constructed using Cytoscape. LQHBG was administered to rabbits to prepare medicated serum. The apoptosis of HRECs was evaluated by TUNEL and Flow Cytometry(FCM). MDA, SOD, LDH, GSH-Px, and T-AOC were detected. The mRNA expressions of Nrf2, NF-κB and HO-1 were detected, protein expression levels of Nrf2, Bcl-2, NF-κB, HO-1 and caspase-3 were analyzed.Results: TUNEL demonstrated the numbers of apoptotic cells in low-and high-dose LQHBG groups was obviously less than model group(P<0.05). FCM analysis revealed apoptotic rates of HRECs in low-and high-dose LQHBG groups were obviously reduced in a dose-dependent manner(P<0.05). The potential mechanism of LQHBG was the NF-κB pathway identified using PharmMapper. LQHBG significantly decreased MDA, LDH levels and enhanced SOD, GSH-Px and T-AOC generation. LQHBG inhibited upregulation of NF-κB, caspase-3 and enhanced Bcl-2, Nrf2, and HO-1 expression.Conclusion: LQHBG protected HRECs against oxidative-stress via suppression of apoptosis and elevation of antioxidant ability, which may involve activation of Nrf2/ARE/HO-1 pathway and inhibition of NF-κB pathway.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 921-921
Author(s):  
Enriqueta Coll-Sangrona ◽  
Ali Amirkhosravi ◽  
Alshad S. Lalani ◽  
Liza Robles ◽  
Hina Desai ◽  
...  

Abstract Calcitriol, the hormonally-active metabolite of Vitamin D3, plays critical roles in calcium homeostasis, cell growth and differentiation, and immunoregulation. The anti-tumor activities of high-dose calcitriol have been demonstrated in a variety of preclinical models of solid tumors, leukemias and lymphomas. Recently, a new dose-intense formulation of calcitriol, termed DN-101 (Asentar™), was developed specifically for cancer therapy which allows for supraphysiological concentrations of calcitriol to be safely delivered in vivo to patients with cancer. In a recent Phase 2 clinical trial, DN-101 significantly increased overall survival and also reduced the incidence of thromboembolic events in men with androgen-independent prostate cancer receiving docetaxel-based chemotherapy. Based on previous observations we hypothesized that calcitriol’s anti-thrombotic effects in vivo may be due to the downregulation of Tissue Factor (TF) antigen and activity and/or upregulation of Thrombomodulin (TM). To test this hypothesis, we incubated A549 lung carcinoma, A375-C15 metastatic melanoma, THP-1 monocytic leukemia, and Eahy926 endothelial cells with increasing concentrations of calcitriol for 24 hrs. For TF induction, tumor cells were stimulated with TNFα for 5 hrs and activity was measured by a clotting assay and a thrombin generation assay (TGA). TM activity was measured by a chromogenic assay. TF and TM surface antigen were assessed by flow cytometry. Calcitriol prevented the induction of TF in TNFα-stimulated THP-1 cells in a dose-dependent manner (from 33% at 1 nM to 94% at 100 nM) as evidenced by a prolongation of plasma clotting time, a decrease in endogenous thrombin potential (ETP), and a reduction of surface TF antigen. In addition, the activity and surface expression of TM on THP-1 cells was increased significantly (40% and 3-fold respectively, P < 0.01) following 100 nM calcitriol treatment. Similarly, in TNFα-stimulated melanoma cells, calcitriol prevented the induction of TF activity (from 26% at 1 nM to 60% at 1 μM) and expression in a dose-dependent manner. High-dose calcitriol treatment also increased melanoma cell TM activity between 8% and 62%. In contrast, constitutively expressed TF activity and antigen were less affected by calcitriol in A549 lung carcinoma cells (12 to 28% reduction at concentrations between 1–100 nM) whilst TM activity and antigen were unaffected. In comparison to the tumor cells, calcitriol had no significant effect on TM or TF activity or antigen in TNFα-stimulated EAhy926 endothelial cells. In conclusion, we have demonstrated that high concentrations of calcitriol inhibit the induction of surface TF expression and upregulates TM in multiple tumor cell lines in vitro. The degree of the inhibition is proportional to the extent of TF induction by TNF-α. These in vitro results provide further support for the anticoagulant properties associated with high concentrations of calcitriol and may provide a rationale for understanding the lower incidence of thromboembolic complications observed in patients with metastatic prostate cancer treated with DN-101.


Author(s):  
Jaclyn Iannucci ◽  
Haripriya Vittal Rao ◽  
Paula Grammas

Abstract Diabetes is strongly linked to the development of Alzheimer’s disease (AD), though the mechanisms for this enhanced risk are unclear. Because vascular inflammation is a consistent feature of both diabetes and AD, the cerebral microcirculation could be a key target for the effects of diabetes in the brain. The goal of this study is to explore whether brain endothelial cells, injured by diabetes-related insults, glucose and hypoxia, can affect inflammatory and activation processes in microglia in vitro. Human brain microvascular endothelial cells (HBMVECs) were either treated with 5 mM glucose (control), 30 mM glucose (high glucose), exposed to hypoxia, or exposed to hypoxia plus high glucose. HBMVEC-conditioned medium was then used to treat BV-2 microglia. Alterations in microglia phenotype were assessed through measurement of nitric oxide (NO), cytokine production, microglial activation state markers, and microglial phagocytosis. HBMVECs were injured by exposure to glucose and/or hypoxia, as assessed by release of LDH, interleukin (IL)-1β, and reactive oxygen species (ROS). HBMVECs injured by glucose and hypoxia induced increases in microglial production of NO, tumor necrosis factor-α (TNFα) and matrix metalloproteinase (MMP)-9. Injured HBMVECs significantly increased microglial expression of CD11c and CLEC7A, and decreased expression of the homeostatic marker P2RY12. Finally, bead uptake by BV-2 cells, an index of phagocytic ability, was elevated by conditioned media from injured HBMVECs. The demonstration that injury to brain endothelial cells by diabetic-associated insults, glucose and hypoxia, promotes microglial inflammation supports the idea that the cerebral microcirculation is a critical locus for the deleterious effects of diabetes in the AD brain.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


Sign in / Sign up

Export Citation Format

Share Document