High Speed Flow Through Wire Gauzes

1959 ◽  
Vol 63 (584) ◽  
pp. 474-475 ◽  
Author(s):  
P. G. Morgan

The Flow of Fluids through screens has been widely studied with particular importance being attached to the measurement of the pressure drop caused by a screen and its relation to the screen geometry and the flow conditions. The majority of the investigations have been carried out on wire gauze screens mounted in ducts with air passing through them, the static pressure being measured on either side of the gauze. Attempts have been made by Weighardt Annand and Grootenhuisto correlate the gauze geometry with the pressure drop and to enable the pressure loss over a given screen and with given flow conditions to be predicted.

1960 ◽  
Vol 64 (590) ◽  
pp. 103-105
Author(s):  
P. G. Morgan

The flow through porous screens has been widely studied from both the theoretical and experimental points of view. The most widely used types of screen are the wire mesh and the perforated plate, and the majority of the literature has been concerned with the former. Several attempts have been made to correlate the parameters governing the flow through such screens, i.e. the pressure drop, the flow conditions and the geometry of the mesh.


Author(s):  
Justin M. Hoey ◽  
Sourin Bhattacharya ◽  
Artur Lutfurakhmanov ◽  
Michael Robinson ◽  
Orven F. Swenson ◽  
...  

Aerosol direct-write printing for mesoscale features has been commercially available since around 2002 from Optomec®. We have developed variances to this process first in Collimated Aerosol Beam-Direct Write (CAB-DW) for printing sub-10 μm features and in Micro Cold Spray for printing with solid metallic aerosols. These deposition tools offer extensive uses, but are still limited in certain applications by either line widths or the amount of overspray. Modeling of aerosol flow through micro-nozzles used in these applications yields a greater understanding of the focusing of these aerosol particles, and may provide a vehicle for new nozzle designs which will further enhance these tools. Recent modeling applied both Stokes and Saffman force to the aerosol particles. Under certain conditions particle rotation and Magnus force may also be necessary to accurately predict the aerosol particles. In this paper we will present our recent results of high-speed flow of 1–10 μm diameter aerosol particles through micro-nozzles in which the model includes all three forces (Stokes, Saffman, Magnus) of fluid-particle interaction, and a comparison of these results to experiments.


2005 ◽  
Author(s):  
Christian Ruel ◽  
Nicolas Hamel ◽  
Francois Lesage

Author(s):  
Biswajit Medhi ◽  
G. M. Hegde ◽  
K. P. J. Reddy ◽  
D. Roy ◽  
R. M. Vasu

Author(s):  
Olivier Chazot

AbstractValidation processes for aerospace flight modeling require to articulate uncertainty quantification methods with the experimental approach. On this note, the specific strategies for the reproduction of re-entry flow conditions in ground-based facilities are reviewed. It shows how it combines high-speed flow physics with the hypersonic wind tunnel capabilities.


Sign in / Sign up

Export Citation Format

Share Document