Electron Microscopy of Silicon Nitride-Based Ceramics

Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.

MRS Bulletin ◽  
1995 ◽  
Vol 20 (2) ◽  
pp. 28-32 ◽  
Author(s):  
M.J. Hoffmann

Silicon nitride is a highly covalent bonded compound which decomposes at 1877°C. Therefore, it is impossible to densify Si3N4 without sintering additives. Densification is achieved by liquid-phase sintering usually using metal oxides such as MgO, Y2O3, A12O3, and most of the rare-earth oxides as sintering additives. The oxides react with SiO2—always present at the surface of Si3N4 particles—to form an oxide melt and, with increasing temperature, an oxynitride melt by dissolution of Si3N4. The resulting microstructure consists of elongated Si3N4 needles embedded in a matrix of smaller equiaxed Si3N4 grains and a grain boundary phase, as shown in Figure 1. The amount and chemistry of the sintering aids determine the volume fraction of the grain boundary phase. The content required for complete densification depends on the sintering techniques: 2–5 vol% additives are sufficient if densification is supported by a high external pressure (hot pressing [HP] or hot isostatic pressing [HIP]); pressureless-sintered and gas-pressure-sintered (10-MPa nitrogen pressure) materials have additive contents of up to 15 vol%. Today, silicon nitride ceramics are regarded as a class of material comparable to steel. Different qualities depend on the size and shape of the silicon nitride grains and the amount and chemistry of the grain boundary phase. Materials with a high room-temperature strength exhibit a finegrained, elongated microstructure, while materials with a high fracture toughness are more coarse-grained. In both cases, a weak interface is required to induce transgranular fracture. (See Becher et al. in this issue.) Since all Si3N4 grains are completely wetted by the grain boundary phase, the interface strength is determined by the additive composition. Nevertheless, a contradiction arises between the development of high-strength and high-toughness Si3N4 ceramics and high-temperature resistant materials because the grain boundary phase is responsible for the excellent properties at low temperatures, but limits the properties at temperatures above its softening point.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
H.-J. Kleebe ◽  
J.S. Vetrano ◽  
J. Bruley ◽  
M. Rühle

It is expected that silicon nitride based ceramics will be used as high-temperature structural components. Though much progress has been made in both processing techniques and microstructural control, the mechanical properties required have not yet been achieved. It is thought that the high-temperature mechanical properties of Si3N4 are limited largely by the secondary glassy phases present at triple points. These are due to various oxide additives used to promote liquid-phase sintering. Therefore, many attempts have been performed to crystallize these second phase glassy pockets in order to improve high temperature properties. In addition to the glassy or crystallized second phases at triple points a thin amorphous film exists at two-grain junctions. This thin film is found even in silicon nitride formed by hot isostatic pressing (HIPing) without additives. It has been proposed by Clarke that an amorphous film can exist at two-grain junctions with an equilibrium thickness.


1991 ◽  
Vol 17 (6) ◽  
pp. 335-341 ◽  
Author(s):  
A.K. Mukhopadhyay ◽  
S.K. Datta ◽  
D. Chakraborty

1999 ◽  
Vol 65 (633) ◽  
pp. 1132-1139 ◽  
Author(s):  
Kotoji ANDO ◽  
MinCheol CHU ◽  
Yasuyoshi KOBAYASHI ◽  
Feiyuan YAO ◽  
Shigemi SATO

1990 ◽  
Vol 32 (8) ◽  
pp. 618-623
Author(s):  
A. P. Gulyaev ◽  
L. P. Sergienko ◽  
A. V. Logunov ◽  
O. I. Samoilov

2005 ◽  
Vol 287 ◽  
pp. 242-246
Author(s):  
Dong Soo Park ◽  
Y.M. Kim ◽  
Byung Dong Hahn ◽  
Chan Park

Silicon nitride samples without and with 3 wt% of the aligned b-silicon nitride whisker seeds were prepared with 8.2 wt% Er2O3 and 1.9 wt% AlN. After sintering at 2148 K for 4h, the samples exhibited densities higher than 99.5% TD. The microstructures and properties of the samples were compared with those of the samples sintered with 4.8 wt% Y2O3 and 2.2 wt% Al2O3 at 2273 K for 4h. For samples without the whiskers, the sample with 4.8 wt% Y2O3 + 2.2 wt% Al2O3 had coarser microstructures than those with with 8.2 wt% Er2O3 + 1.9 wt% AlN. However, the samples with the whisker seeds, the former sample appeared to have only slightly larger grains than the latter sample in spite of the significant difference in the sintering temperatures. For the samples without the whisker seeds, the room temperature flexural strength was higher for the sample with Er2O3 + AlN. However, for the samples with the aligned whisker seeds, the sample with Y2O3 + Al2O3 exhibited higher room temperature flexural strength than that with Er2O3 + AlN although the average grain width of the former sample was larger than that of the latter sample. In case of the high temperature flexural strength at 1673 K, the flexural strengths of the samples with the whisker seeds were higher than double the strengths of the samples without the whisker seeds. For samples without the whisker seeds, the sample with Er2O3 + AlN exhibited better mechanical properties than that with Y2O3 + Al2O3. However, for the samples with the aligned whisker seeds, the sample with Y2O3 + Al2O3 exhibited better mechanical properties than those with Er2O3 + AlN. The results were explained in terms of the microstructures of the samples.


2003 ◽  
Vol 86 (8) ◽  
pp. 1430-1432 ◽  
Author(s):  
Naoki Kondo ◽  
Masahiro Asayama ◽  
Yoshikazu Suzuki ◽  
Tatsuki Ohji

1993 ◽  
Vol 28 (18) ◽  
pp. 5014-5018 ◽  
Author(s):  
Yoshiro Ito ◽  
Kazumasa Kitamura ◽  
Masayoshi Kanno

Sign in / Sign up

Export Citation Format

Share Document