Ion Beam Induced Interfacial Reactions in Molybdenum Thin Films on Silicon

Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.

1998 ◽  
Vol 555 ◽  
Author(s):  
Peter A. DiFonzo ◽  
Mona Massuda ◽  
James T. Kelliher

AbstractThe stoichiometric composition and oxidation rates ( wet or dry ) of plasma enhanced chemical vapor deposited (PECVD) silicon carbide (SiC) films are effected by the deposition conditions of trimethylsilane (3MS) and carrier gas. We report the oxidation kinetics of SiC thin films deposited in a modified commercial PECVD reactor. A standard horizontal atmospheric furnace in the temperature range of 925–1100°C was used in the oxidation. Oxidized films were measured optically by commercially available interferometer and ellipsometer tools in addition to mechanically using a commercially available profilometer. Activation energies of the parabolic rates were in the range of 20.93 to 335.26 kJ/mol.


2007 ◽  
Vol 101 (6) ◽  
pp. 063711 ◽  
Author(s):  
A. Lohstroh ◽  
P. J. Sellin ◽  
S. G. Wang ◽  
A. W. Davies ◽  
J. M. Parkin

2000 ◽  
Vol 6 (4) ◽  
pp. 285-290
Author(s):  
John W. Steeds ◽  
Steven J. Charles ◽  
Annette C. Gilmore ◽  
James E. Butler

Abstract It is shown that star disclinations can be a significant source of stress in chemical vapor deposited (CVD) diamond. This purely geometrical origin contrasts with other sources of stress that have been proposed previously. The effectiveness is demonstrated of the use of electron irradiation using a transmission electron microscope (TEM) to displace atoms from their equilibrium sites to investigate intrinsic defects and impurities in CVD diamond. After irradiation, the samples are studied by low temperature photoluminescence microscopy using UV or blue laser illumination. Results are given that are interpreted as arising from isolated <100> split self-interstitials and positively charged single vacancies. Negatively charged single vacancies can also be revealed by this technique. Nitrogen and boron impurities may also be studied similarly. In addition, a newly developed liquid gallium source scanned ion beam mass spectrometry (SIMS) instrument has been used to map out the B distribution in B doped CVD diamond specimens. The results are supported by micro-Raman spectroscopy.


2003 ◽  
Vol 773 ◽  
Author(s):  
David J. Edell

AbstractDevelopments in the field of BioMEMS share many of the same issues encountered in the development of neural interface technology that has been underway for many decades. In addition to issues of function, other issues such as biocompatibility and bioresistance have also presented great challenges. The focus of this paper is on the development and testing of electrically insulating biomaterials for micro-devices that can be implanted in biological systems. A variety of accelerated degradation and accelerated detection of degradation techniques have been developed and are used to screen candidate materials. Direct tests of mechanical properties, adhesion, and chemical resistance are used for further assessment. Promising materials indicate what chemistry might be suitable for development of a Chemical Vapor Deposited (CVD) thin film coating. CVD coatings are under development that may be useful for insulation of very small, micromachined elements of an implantable device while only increasing the size of the device by a few micrometers. Materials passing in-vitro testing are then considered for in-vivo testing. Novel instrumentation for testing devices in-vivo has been developed.


1993 ◽  
Vol 309 ◽  
Author(s):  
P. J. Ding ◽  
B. Zheng ◽  
E. T. Eisenbraun ◽  
W. A. Lanford ◽  
A. E. Kaloyeros ◽  
...  

AbstractOxidation kinetics of plasma-assisted chemical vapor deposited (PA-CVD) copper films were investigated using Rutherford backscattering spectrometry (RBS). The PA-CVD copper films were deposited using hydrogen plasma reduction of bis(hexafluoroacetylacetonato) copper(II), Cu(hfa)2, precursor. Under identical experimental conditions, PA-CVD copper films oxidize more slowly than sputtered copper films. This decrease in oxidationis manifested both as a time delay at the beginning of the oxidation of the PA-CVD copper films and as a decrease in the rate of oxide growth at oxidation temperatures of 200ºC and below. The possivation appears to be caused by the hydrogen plasma present during depostion.


2011 ◽  
Vol 1282 ◽  
Author(s):  
Shuji Kiyohara ◽  
Masaya Kumagai ◽  
Yoshio Taguchi ◽  
Yoshinari Sugiyama ◽  
Yukiko Omata ◽  
...  

ABSTRACTWe have investigated the nanopatterning of chemical vapor deposited (CVD) diamond films in room-temperature nanoimprint lithography (RT-NIL), using a diamond nanodot mold. We have proposed the use of polysiloxane as an electron beam (EB) mask and RT-imprint resist materials. The diamond molds of cylinder dot using the RT-NIL process were fabricated with polysiloxane oxide mask in EB lithography technology. The dot in minimum diameter is 500 nm. The pitch between the dots is 2 μm, and dot has a height of about 600 nm. It was found that the optimum imprinting conditions for the RT-NIL : time from spin-coating to imprinting t1 of 1 min , pressure time t2 of 5 min, imprinting pressure P of 0.5 MPa. The imprint depth obtained after the press under their conditions was 500 nm. We carried out the RT-NIL process for the fabrication of diamond nanopit arrays, using the diamond nanodot molds that we developed. The resulting diamond nanopit arrays with 500 nm-diameter and 200 nm-depth after the electron cyclotron resonance (ECR) oxygen ion beam etching were fabricated. The diameter of diamond nanopit arrays was in good agreement with that of the diamond nanodot mold.


1989 ◽  
Vol 157 ◽  
Author(s):  
C. Spinella ◽  
S. Lombardo ◽  
S. U. Campisano

ABSTRACTThe ion beam induced growth of isolated silicon grains has been studied in chemical vapor deposited amorphous layers. The crystal radius increases linearly with the 1on dose and the growth rate depends in a complex way on the irradiation temperature in the 320 - 480 °C investigated temperature range. The grain density does not depend on the ion dose but it increases exponentially with increasing irradiation temperature. The grain density obtained after a pure thermal process on similar samples is In any case larger than the density appearing after ion irradiation. These facts may be explained by assuming that during ion irradiation only pre-existing seeds whose size is larger than a critical value can grow. This critical cluster size is larger than the critical cluster size for a pure thermal process.


Sign in / Sign up

Export Citation Format

Share Document