Cytoskeletal control of neuronal geometry: A serial EM analysis

Author(s):  
John K. Stevens ◽  
Judy Trogadis

The cytoskeleton plays a direct role in controlling neurite shape. To quantitatively study both the three dimensional shape and the sub-micron structure of the cytoskeleton requires complete serial reconstruction at the Electron Microscopic level. We have devised a computer reconstruction system specifically for this purpose.The system uses a 35mm film copy of 3.25 x 4.00 inch EM negative as the data source. The film is placed into a high speed film transport (15 frames/second), which is mounted on a X,Y and rotation stage controlled by stepping motors. The 35mm film is viewed through a stepping motor controlled zoom lens mounted on a high resolution (1119 x 1024) video camera. A high resolution frame grabber controlled by the computer can store one complete frame. Thus, the live image and a stored image may be displayed alternately on a high resolution monitor. Finally, a graphics overlay and mouse connected to the computer can be used to align successive sections via the stepping motors, as well as to trace the outlines of a profile, or of a microtubule.

2007 ◽  
Vol 329 ◽  
pp. 761-766 ◽  
Author(s):  
Y. Zhang ◽  
Masato Yoshioka ◽  
Shin-Ichiro Hira

At present, a commercially available magnetic barrel machine equipped with permanent magnets has some faults arising from constructional reason. That is, grinding or finishing ability is different from place to place in the machining region, resulting in the limitation on the region we can use in the container of workpieces. Therefore, in this research, authors made the new magnetic barrel machine equipped with three dimensional (3D) magnet arrangement to overcome these faults. The grinding ability of the new 3D magnetic barrel machine converted was experimentally examined, and compared with that of the traditional magnetic barrel machine. As a result, it was shown that we can use much broader region in the new 3D machine. It was also shown that the grinding ability became higher. The distribution of barrel media in action was recorded by means of a high speed video camera. It was clarified that the media rose up higher and were distributed more uniformly in the container by the effect of the magnet block newly set up. It was supposed that this must be the reason for the above-mentioned improvement of grinding ability.


2005 ◽  
Vol 38 (2) ◽  
pp. 260-265 ◽  
Author(s):  
Leonore Wiehl ◽  
Jens Oster ◽  
Michael Huth

Epitaxially grown Mo films on a faceted corundum (α-Al2O3)mplane were investigated by transmission electron microscopy. Low- and high-resolution images were taken from a cross-section specimen cut perpendicular to the facets. It was possible to identify unambiguously the crystallographic orientation of these facets and explain the considerable deviation (∼10°) of the experimental interfacet angle, as measured with atomic force microscopy (AFM), from the expected value. For the first time, proof is given for a smooth \{10\bar{1}1\} facet and a curvy facet with orientation near to \{10\bar{1}\bar{2}\}. Moreover, the three-dimensional epitaxial relationship of an Mo film on a faceted corundummsurface was determined.


2005 ◽  
Vol 2005 (1) ◽  
pp. 77-89 ◽  
Author(s):  
W. Chon ◽  
R. S. Amano

When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a1.1mwide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Doppler velocimetry (LDV) system. A high-speed video camera was used to observe the flow pattern. Furthermore, noise levels were measured using a sound level meter. For the computational fluid dynamics (CFD) work, several arbitrary radial sections of a two-dimensional blade were selected to study flow computations. A three-dimensional, full deck model was also developed for realistic flow analysis. The computational results were then compared with the experimental results.


2013 ◽  
Vol 12 (01) ◽  
pp. 43-68 ◽  
Author(s):  
PRASANNA GANDHI ◽  
SUHAS DESHMUKH ◽  
RAHUL RAMTEKKAR ◽  
KIRAN BHOLE ◽  
ALEM BARAKI

Microstereolithography (MSL) is technology of fabrication of three-dimensional (3D) components by using layer-by-layer photopolymerization. Typical design goals of MSL system are: small features, high resolution, high speed of fabrication, and large overall size of component. This paper focuses on design and development of such a system to meet these optomechatronic requirements. We first analyze various optical scanning schemes used for MSL systems along with the proposed scheme via optical simulations and experiments. Next, selection criteria for various subsystems are laid down and appropriate design decisions for the proposed system are made. Further, mechanical design of the scanning mechanism is carried out to meet requirements of high speed and resolution. Finally, system integration and investigation in process parameters is carried out and fabrication of large microcomponent with high resolution is demonstrated. The proposed system would be useful for fabrication of multiple/large microcomponents with high production rate in various applications.


1989 ◽  
Vol 103 (12) ◽  
pp. 1125-1129 ◽  
Author(s):  
M. Takumida ◽  
L. Fredelius ◽  
D. Bagger-Sjöbäck ◽  
Y. Harada ◽  
J. Wersäll

AbstractChanges in ciliary interconnections in the organ of Corti are described after acoustic overstimulation using a special high resolution scanning electron microscope and tannic acid-osmium staining technique, giving an almost three dimensional view. Guinea pigs were exposed to a 3.85 kHz pure tone at an intensity of 120 dB for 22.5 minutes. The first detectable change was a disarrangement of the cilia with a loosening of the interconnections. The ciliary plasma membrane presented with an abnormally smooth appearance. The tip links connecting the tips of the stereocilia to their taller neighbours were also affected showing elongation or even disappearance. The fine granules which cover the tips of the tallest stereocilia of the outer hair cells were decreased. These findings suggest that acoustic overstimulation may affect the carbohydrate metabolism exceding to degeneration of ciliary interconnections resulting in a disarrangement and detachment of cilia. The tip links, which may participate in sensory cell transduction, seem also to be affected by acoustic overstimulation.


2005 ◽  
Vol 32 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Toshiaki Yagi ◽  
Yasuo Koizumi ◽  
Mio Aoyagi ◽  
Maki Kimura ◽  
Kazuki Sugizaki

2020 ◽  
Vol 6 (15) ◽  
pp. eaay7619 ◽  
Author(s):  
Gili Dardikman-Yoffe ◽  
Simcha K. Mirsky ◽  
Itay Barnea ◽  
Natan T. Shaked

We present a new acquisition method that enables high-resolution, fine-detail full reconstruction of the three-dimensional movement and structure of individual human sperm cells swimming freely. We achieve both retrieval of the three-dimensional refractive-index profile of the sperm head, revealing its fine internal organelles and time-varying orientation, and the detailed four-dimensional localization of the thin, highly-dynamic flagellum of the sperm cell. Live human sperm cells were acquired during free swim using a high-speed off-axis holographic system that does not require any moving elements or cell staining. The reconstruction is based solely on the natural movement of the sperm cell and a novel set of algorithms, enabling the detailed four-dimensional recovery. Using this refractive-index imaging approach, we believe that we have detected an area in the cell that is attributed to the centriole. This method has great potential for both biological assays and clinical use of intact sperm cells.


Sign in / Sign up

Export Citation Format

Share Document