Simulations of high-resolution images of amorphous silicon films

Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.

2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Author(s):  
Vladimir Barannik ◽  
Andrii Krasnorutsky ◽  
Sergii Shulgin ◽  
Valerii Yeroshenko ◽  
Yevhenii Sidchenko ◽  
...  

The subject of research in the article are the processes of video image processing using an orthogonal transformation for data transmission in information and telecommunication networks. The aim is to build a method of compression of video images while maintaining the efficiency of its delivery at a given informative probability. That will allow to provide a gain in the time of delivery of compressed video images, a necessary level of availability and authenticity at transfer of video data with preservation of strictly statistical regulations and the controlled loss of quality. Task: to study the known algorithms for selective processing of static video at the stage of approximation and statistical coding of the data based on JPEG-platform. The methods used are algorithm based on JPEG-platform, methods of approximation by orthogonal transformation of information blocks, arithmetic coding. It is a solution of scientific task-developed methods for reducing the computational complexity of transformations (compression and decompression) of static video images in the equipment for processing visual information signals, which will increase the efficiency of information delivery.The following results were obtained. The method of video image compression with preservation of the efficiency of its delivery at the set informative probability is developed. That will allow to fulfill the set requirements at the preservation of structural-statistical economy, providing a gain in time to bring compressed images based on the developed method, relative to known methods, on average up to 2 times. This gain is because with a slight difference in the compression ratio of highly saturated images compared to the JPEG-2000 method, for the developed method, the processing time will be less by at least 34%.Moreover, with the increase in the volume of transmitted images and the data transmission speed in the communication channel - the gain in the time of delivery for the developed method will increase. Here, the loss of quality of the compressed/restored image does not exceed 2% by RMS, or not worse than 45 dB by PSNR. What is unnoticeable to the human eye.Conclusions. The scientific novelty of the obtained results is as follows: for the first time the method of classification (separate) coding (compression) of high-frequency and low-frequency components of Walsh transformants of video images is offered and investigated, which allows to consider their different dynamic range and statistical redundancy reduced using arithmetic coding. This method will allow to ensure the necessary level of availability and authenticity when transmitting video data, while maintaining strict statistical statistics.Note that the proposed method fulfills the set tasks to increase the efficiency of information delivery. Simultaneously, the method for reducing the time complexity of the conversion of highly saturated video images using their representation by the transformants of the discrete Walsh transformation was further developed. It is substantiated that the perspective direction of improvement of methods of image compression is the application of orthogonal transformations on the basis of integer piecewise-constant functions, and methods of integer arithmetic coding of values of transformant transformations.It is substantiated that the joint use of Walsh transformation and arithmetic coding, which reduces the time of compression and recovery of images; reduces additional statistical redundancy. To further increase the degree of compression, a classification coding of low-frequency and high-frequency components of Walsh transformants is developed. It is shown that an additional reduction in statistical redundancy in the arrays of low-frequency components of Walsh transformants is achieved due to their difference in representation. Recommendations for the parameters of the compression method for which the lowest value of the total time of information delivery is provided are substantiated.


Author(s):  
Michio Ueno ◽  
Yoshiaki Tsukada

The authors propose a method to estimate full-scale propeller torque consisting of low-frequency and high-frequency components in waves using measured data of free-running model ship. The duct fan auxiliary thruster (DFAT) [1] and the rudder-effectiveness and speed correction (RSC) [2,3] ensure similar model ship motion to full-scale in external forces, where RSC controls the model ship propeller rate of revolution and the auxiliary thrust depending on measured model ship speed. Analyzing a fluctuating component of effective inflow velocity to propeller due to waves, the method estimates full-scale fluctuating propeller torque in waves. This method also makes it possible to adopt into free-running model ship tests any engine model simulating interaction between propeller torque and engine torque. Trial application of the method exemplifies the property of full-scale fluctuating propeller torque comparing with that of model ship.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zhaisheng Ding ◽  
Dongming Zhou ◽  
Rencan Nie ◽  
Ruichao Hou ◽  
Yanyu Liu

Computed tomography (CT) images show structural features, while magnetic resonance imaging (MRI) images represent brain tissue anatomy but do not contain any functional information. How to effectively combine the images of the two modes has become a research challenge. In this paper, a new framework for medical image fusion is proposed which combines convolutional neural networks (CNNs) and non-subsampled shearlet transform (NSST) to simultaneously cover the advantages of them both. This method effectively retains the functional information of the CT image and reduces the loss of brain structure information and spatial distortion of the MRI image. In our fusion framework, the initial weights integrate the pixel activity information from two source images that is generated by a dual-branch convolutional network and is decomposed by NSST. Firstly, the NSST is performed on the source images and the initial weights to obtain their low-frequency and high-frequency coefficients. Then, the first component of the low-frequency coefficients is fused by a novel fusion strategy, which simultaneously copes with two key issues in the fusion processing which are named energy conservation and detail extraction. The second component of the low-frequency coefficients is fused by the strategy that is designed according to the spatial frequency of the weight map. Moreover, the high-frequency coefficients are fused by the high-frequency components of the initial weight. Finally, the final image is reconstructed by the inverse NSST. The effectiveness of the proposed method is verified using pairs of multimodality images, and the sufficient experiments indicate that our method performs well especially for medical image fusion.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Gang Zhang ◽  
Hongchi Liu ◽  
Pingli Li ◽  
Meng Li ◽  
Qiang He ◽  
...  

Power system load forecasting is an important part of power system scheduling. Since the power system load is easily affected by environmental factors such as weather and time, it has high volatility and multi-frequency. In order to improve the prediction accuracy, this paper proposes a load forecasting method based on variational mode decomposition (VMD) and feature correlation analysis. Firstly, the original load sequence is decomposed using VMD to obtain a series of intrinsic mode function (IMF), it is referred to below as a modal component, and they are divided into high frequency, intermediate frequency, and low frequency signals according to their fluctuation characteristics. Then, the feature information related to the power system load change is collected, and the correlation between each IMF and each feature information is analyzed using the maximum relevance minimum redundancy (mRMR) based on the mutual information to obtain the best feature set of each IMF. Finally, each component is input into the prediction model together with its feature set, in which back propagation neural network (BPNN) is used to predict high-frequency components, least square-support vector machine (LS-SVM) is used to predict intermediate and low frequency components, and BPNN is also used to integrate the prediction results to obtain the final load prediction value, and compare the prediction results of method in this paper with that of the prediction models such as autoregressive moving average model (ARMA), LS-SVM, BPNN, empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and VMD. This paper carries out an example analysis based on the data of Xi’an Power Grid Corporation, and the results show that the prediction accuracy of method in this paper is higher.


2014 ◽  
Vol 962-965 ◽  
pp. 2856-2862
Author(s):  
De Yi Sang ◽  
Jian Jun Zhao ◽  
Li Bin Yang

The noise resulted in the calibration process of the landing guidance radar can cause serious accidents. Analyse the principle of the EMD and wavelet denoising method. Points out the deficiencies of pure EMD or pure wavelet denoising method. Propose a denoising method based on EMD and wavelet. Improved the discriminanting method for high or low frequency components and the discriminanting method for wavelet thresholding. First EMD the signal, then denoise the high frequency components by wavelet, finally, combined the low frequency components and the denoised high frequency components to get the denoised data.


2014 ◽  
Vol 986-987 ◽  
pp. 1558-1564
Author(s):  
Cheng Ju Yang ◽  
Cheng Wei Zhang ◽  
Geng Bin Zhang ◽  
Pei Ling Chen ◽  
Shi Jun Xie

Double circuit transmission line is an important part of the power grid, which is vulnerable to lightning and may endanger the security and stability of the power grid. In order to design a sensor which can monitor the lightning traveling wave current on double circuit transmission line, simulations of lightning on the double circuit transmission line were conducted. The simulation result shows that besides high frequency components, the traveling wave contains a lot of low frequency components. Based on the equivalent model and the frequency response of the self-integrated Rogowski coil, it turns out that the widely used self-integrated Rogowski coil is not suitable for this application as the problem of low frequency distortion. In this paper, through theoretical analysis and simulations in Matlab, an improved Rogowski coil with analog integrator is proposed which can correct the low frequency distortion of the self-integrated Rogowski coil. All the simulations, experiments and operating data installed to a double circuit transmission line in China verify the validity of the high bandwidth Rogowski coil.


2010 ◽  
Vol 139-141 ◽  
pp. 2502-2505
Author(s):  
Bing Cheng Wang ◽  
Zhao Hui Ren

Simulated four different fault signals in the lab, the authors then used wavelet scalogram and amplitude spectrum to make analysis on the above four fault signals and abstract each spectrum characteristics. Wavelet scalogram was able to extract the characteristic’s frequency, show the impact components caused by rub-impact, show the beat phenomenon caused by oil whip and show the irreducible high frequency components as well as the complex low-frequency components. Amplitude spectrum was able to show the energy size distribution at various frequency bands and able to analyze and calculate the relationship between various frequency components. Thus they express the relationship between various frequency banks from a quantitative manner. Therefore, combining the wavelet scalogram and amplitude spectrum when making analysis, as they complement and verify each other, it will enhance the reliability when extract and analyze the characteristics of fault signal.


2020 ◽  
Vol 27 (2) ◽  
pp. 253-260
Author(s):  
Xiang-Yu Jia ◽  
Chang-Lei DongYe

Abstract. The seismic section image contains a wealth of texture detail information, which is important for the interpretation of the formation profile information. In order to enhance the texture detail of the image while keeping the structural information of the image intact, a multi-scale enhancement method based on wavelet transform is proposed. Firstly, the image is wavelet decomposed to obtain a low-frequency structural component and a series of high-frequency texture detail components. Secondly, bilateral texture filtering is performed on the low-frequency structural components to filter out high-frequency noise while maintaining the edges of the image; adaptive enhancement is performed on the high-frequency detail components to filter out low-frequency noise while enhancing detail. Finally, the processed high- and low-frequency components reconstructed by wavelets can obtain a seismic section image with enhanced detail. The method of this paper enhances the texture detail information in the image while preserving the edge of the image.


Sign in / Sign up

Export Citation Format

Share Document