Silicification of wood-cell walls

Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).

Author(s):  
S. Pramod ◽  
M. Anju ◽  
H. Rajesh ◽  
A. Thulaseedharan ◽  
Karumanchi S. Rao

AbstractPlant growth regulators play a key role in cell wall structure and chemistry of woody plants. Understanding of these regulatory signals is important in advanced research on wood quality improvement in trees. The present study is aimed to investigate the influence of exogenous application of 24-epibrassinolide (EBR) and brassinosteroid inhibitor, brassinazole (BRZ) on wood formation and spatial distribution of cell wall polymers in the xylem tissue of Leucaena leucocephala using light and immuno electron microscopy methods. Brassinazole caused a decrease in cambial activity, xylem differentiation, length and width of fibres, vessel element width and radial extent of xylem suggesting brassinosteroid inhibition has a concomitant impact on cell elongation, expansion and secondary wall deposition. Histochemical studies of 24-epibrassinolide treated plants showed an increase in syringyl lignin content in the xylem cell walls. Fluorescence microscopy and transmission electron microscopy studies revealed the inhomogenous pattern of lignin distribution in the cell corners and middle lamellae region of BRZ treated plants. Immunolocalization studies using LM10 and LM 11 antibodies have shown a drastic change in the micro-distribution pattern of less substituted and highly substituted xylans in the xylem fibres of plants treated with EBR and BRZ. In conclusion, present study demonstrates an important role of brassinosteroid in plant development through regulating xylogenesis and cell wall chemistry in higher plants.


1994 ◽  
Vol 72 (10) ◽  
pp. 1489-1495 ◽  
Author(s):  
X. XuHan ◽  
A. A. M. Van Lammeren

Microtubular cytoskeletons in nuclear, alveolar, and cellular endosperm of bean (Phaseolus vulgaris) were analyzed immunocytochemically and by electron microscopy to reveal their function during cellularization. Nuclear endosperm showed a fine network of microtubules between the wide-spaced nuclei observed towards the chalazal pole. Near the embryo, where nuclei were densely packed, bundles of microtubules radiated from nuclei. They were formed just before alveolus formation and functioned in spacing nuclei and in forming internuclear, phragmoplast-like structures that gave rise to nonmitosis-related cell plates. During alveolus formation cell plates extended and fused with other newly formed walls, thus forming the walls of alveoli. Growing wall edges of cell plates exhibited arrays of microtubules perpendicular to the plane of the wall, initially. When two growing walls were about to fuse, microtubules of both walls interacted, and because of the interaction of microtubules, the cell walls changed their position. When a growing wall was about to fuse with an already existing wall, such interactions between microtubules were not observed. It is therefore concluded that interactions of microtubules of fusing walls influence shape and position of walls. Thus microtubules control the dynamics of cell wall positioning and initial cell shaping. Key words: cell wall, cellularization, endosperm, microtubule, Phaseolus vulgaris.


Holzforschung ◽  
2017 ◽  
Vol 71 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Yanjun Li ◽  
Chengjian Huang ◽  
Li Wang ◽  
Siqun Wang ◽  
Xinzhou Wang

Abstract The effects of thermal treatment of bamboo at 130, 150, 170, and 190°C for 2, 4, and 6 h were investigated in terms of changes in chemical composition, cellulose crystallinity, and mechanical behavior of the cell-wall level by means of wet chemical analysis, X-ray diffraction (XRD), and nanoindentation (NI). Particularly, the reduced elastic modulus (Er), hardness (H), and creep behavior were in focus. Both the temperature and treatment time showed significant effects. Expectedly, the hemicelluloses were degraded and the relative lignin content was elevated, while the crystallinity of the cellulose moiety was increased upon thermal treatment. The Er and H data of the cell wall were increased after 6 h treatment at 190°C, from 18.4 to 22.0 GPa and from 0.45 to 0.65 GPa, respectively. The thermal treatment led to a decrease of the creep ratio (CIT) under the same conditions by ca. 28%. The indentation strain state (εi) also decreased significantly after thermal treatment during the load-holding stage.


IAWA Journal ◽  
2012 ◽  
Vol 33 (4) ◽  
pp. 403-416 ◽  
Author(s):  
Karumanchi S. Rao ◽  
Yoon Soo Kim ◽  
Pramod Sivan

Sequential changes occurring in cell walls during expansion, secondary wall (SW) deposition and lignification have been studied in the differentiating xylem elements of Holoptelea integrifolia using transmission electron microscopy. The PATAg staining revealed that loosening of the cell wall starts at the cell corner middle lamella (CCML) and spreads to radial and tangential walls in the zone of cell expansion (EZ). Lignification started at the CCML region between vessels and associated parenchyma during the final stages of S2 layer formation. The S2 layer in the vessel appeared as two sublayers,an inner one and outer one.The contact ray cells showed SW deposition soon after axial paratracheal parenchyma had completed it, whereas noncontact ray cells underwent SW deposition and lignification following apotracheal parenchyma cells. The paratracheal and apotracheal parenchyma cells differed noticeably in terms of proportion of SW layers and lignin distribution pattern. Fibres were found to be the last xylem elements to complete SW deposition and lignification with differential polymerization of cell wall polysaccharides. It appears that the SW deposition started much earlier in the middle region of the fibres while their tips were still undergoing elongation. In homogeneous lignin distribution was noticed in the CCML region of fibres.


2002 ◽  
Vol 80 (10) ◽  
pp. 1029-1033 ◽  
Author(s):  
W Gindl ◽  
H S Gupta ◽  
C Grünwald

The lignin content and the mechanical properties of lignifying and fully lignified spruce tracheid secondary cell walls were determined using UV microscopy and nano-indentation, respectively. The average lignin content of developing tracheids was 0.10 g·g–1, as compared with 0.21 g·g–1 in mature tracheids. The modulus of elasticity of developing cells was on average 22% lower than the one measured in mature, fully lignified cells. For the longitudinal hardness, a larger difference of 26% was observed. As lignifying cells in the cambial zone are undergoing cell wall development, spaces in the cellulose–hemicellulose structure are filled with lignin and the density of the cell wall is believed to increase. It is therefore suggested that the observed difference in modulus of elasticity between developing and fully lignified cell walls is due to the filling of spaces with lignin and an increase of the packing density of the cell wall during lignification. Although remarkably less stiff than the composite polysaccharide structure in the secondary cell wall, lignin may be considered equally hard. Therefore, the observed increase in lignin content may contribute directly to the measured increase of hardness.Key words: secondary cell wall, hardness, lignin, modulus of elasticity, wood formation.


1992 ◽  
Vol 118 (2) ◽  
pp. 467-479 ◽  
Author(s):  
M A Lynch ◽  
L A Staehelin

Using immunocytochemical techniques and antibodies that specifically recognize xyloglucan (anti-XG), polygalacturonic acid/rhamnogalacturonan I (anti-PGA/RG-I), and methylesterified pectins (JIM 7), we have shown that these polysaccharides are differentially synthesized and localized during cell development and differentiation in the clover root tip. In cortical cells XG epitopes are present at a threefold greater density in the newly formed cross walls than in the older longitudinal walls, and PGA/RG-I epitopes are detected solely in the expanded middle lamella of cortical cell corners, even after pretreatment of sections with pectinmethylesterase to uncover masked epitopes. These results suggest that in cortical cells XG and PGA/RG-I are differentially localized not only to particular wall domains, but also to particular cell walls. In contrast to their nonoverlapping distribution in cortical cells, XG epitopes and PGA/RG-I epitopes largely colocalize in the epidermal cell walls. The results also demonstrate that the middle lamella of the longitudinal walls shared by epidermal cells and by epidermal and cortical cells constitutes a barrier to the diffusion of cell wall and mucilage molecules. Synthesis of XG and PGA/RG-I epitope-containing polysaccharides also varies during cellular differentiation in the root cap. The differentiation of gravitropic columella cells into mucilage-secreting peripheral cells is marked by a dramatic increase in the synthesis and secretion of molecules containing XG and PGA/RG-I epitopes. In contrast, JIM 7 epitopes are present at abundant levels in columella cell walls, but are not detectable in peripheral cell walls or in secreted mucilage. There were also changes in the cisternal labeling of the Golgi stacks during cellular differentiation in the root tip. Whereas PGA/RG-I epitopes are detected primarily in cis- and medial Golgi cisternae in cortical cells (Moore, P. J., K. M. M. Swords, M. A. Lynch, and L. A. Staehelin. 1991. J. Cell Biol. 112:589-602), they are localized predominantly in the trans-Golgi cisternae and the trans-Golgi network in epidermal and peripheral root cap cells. These observations suggest that during cellular differentiation the plant Golgi apparatus can be both structurally and functionally reorganized.


1996 ◽  
Vol 74 (12) ◽  
pp. 1974-1981 ◽  
Author(s):  
C. Batisse ◽  
P. J. Coulomb ◽  
C. Coulomb ◽  
M. Buret

The changes in texture of fruits during ripening are linked to cell wall degradation involving synthesis and degradation of polymers. An increase in pectin solubility leads to cell sliding and an elastic aspect of tissues. The biochemical cell wall process differs between soft and crisp fruits originating from a same cultivar but cultivated under different agroclimatic conditions. Although the proportions of cell wall material are similar, the composition and structure of the two cell walls are very different at maturity. A solubilization of the middle lamella and a restructuration of the primary cell walls arising from the cells separation is observed in crisp fruits. In contrast, the middle lamella of the soft fruits is better preserved and the primary cell walls are thin and show degradation bags delimited by residual membrane formations. In addition, the macroendocytosis process by endosome individualization is more important in soft fruits. In conclusion, the fruit texture depends on the extent of the links between cell wall polymers. Keywords: cherry, cell wall, texture, ultrastructural study.


2017 ◽  
Vol 23 (5) ◽  
pp. 1048-1054 ◽  
Author(s):  
Yunzhen Zheng ◽  
Daniel J. Cosgrove ◽  
Gang Ning

AbstractWe have used field emission scanning electron microscopy (FESEM) to study the high-resolution organization of cellulose microfibrils in onion epidermal cell walls. We frequently found that conventional “rule of thumb” conditions for imaging of biological samples did not yield high-resolution images of cellulose organization and often resulted in artifacts or distortions of cell wall structure. Here we detail our method of one-step fixation and dehydration with 100% ethanol, followed by critical point drying, ultrathin iridium (Ir) sputter coating (3 s), and FESEM imaging at a moderate accelerating voltage (10 kV) with an In-lens detector. We compare results obtained with our improved protocol with images obtained with samples processed by conventional aldehyde fixation, graded dehydration, sputter coating with Au, Au/Pd, or carbon, and low-voltage FESEM imaging. The results demonstrated that our protocol is simpler, causes little artifact, and is more suitable for high-resolution imaging of cell wall cellulose microfibrils whereas such imaging is very challenging by conventional methods.


Holzforschung ◽  
2005 ◽  
Vol 59 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Jinzhen Cao ◽  
D. Pascal Kamdem

Abstract The relationship between copper absorption and density distribution in wood cell walls was investigated in this study. The density distribution on layer level was obtained from two approaches: (1) calculation by using data obtained from literature; (2) microdistribution of carbon and oxygen atoms in the wood cell. The microdistribution of carbon and oxygen in untreated southern yellow pine (Pinus spp.) sapwood, as well as copper in cell walls of copper-ethanolamine (Cu-EA) treated wood was determined by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDXA). Both approaches for density distribution led to the same result: the density was higher in the compound middle lamella and cell corners than in the secondary wall. The concentration/intensity of Cu, C and O in the cell wall follow the same trend as the density distribution; suggesting that density may play a major role in SEM-EDXA study of the distribution of metal-containing wood preservatives within the wood cell wall.


1977 ◽  
Vol 89 (2) ◽  
pp. 327-340 ◽  
Author(s):  
E. Jane Morris ◽  
J. S. D. Bacon

SummaryThe digestibilities of grass cell wall constituents determined in a digestion trial were compared with those obtained by suspending various isolated cell wall preparations in nylon bags in the rumen of a sheep. Particular attention was paid to acetyl groups and to individual sugars, which were determined in both cases by gas liquid chromatography.For dried grass and hay in the digestion trial the cell wall constituents showed digestibilities decreasing in the following order: arabinose, galactose, glucose, xylose, acetyl, lignin.For a leaf cell wall preparation derived from all cell types except mesophyll, the nylon bag technique allowed the same order of digestibilities; rhamnose and uronic acids were also measured and found to be rapidly digested. Mesophyll cell walls placed in nylon bags were more readily digested than non-mesophyll. All the sugars, and also acetyl groups, were digested to the same extent.In a grass cell wall preparation isolated from sheep faeces, tested similarly, xylose and glucose were digested to the same extent, but acetyl groups were less digested.Removal of acetyl groups, using sodium ethoxide, which left the sugar composition and lignin content unchanged, increased the digestibility particularly of the cell walls from faeces.The results are discussed with reference to the relationship between cell wall composition and digestibility.


Sign in / Sign up

Export Citation Format

Share Document