Angular Corrections for the Seemann-Bohlin X-Ray Diffractometer

1991 ◽  
Vol 6 (4) ◽  
pp. 200-203 ◽  
Author(s):  
D. Rafaja ◽  
V. Valvoda

AbstractA method for the correction of peak position for the Seemann-Bohlin X-ray diffractometer, useful for practical application, is presented. The position of diffraction peaks is largely influenced by both the displacement of specimen from the diffractometer circle and the shift of the X-ray tube focus. The described correction method has been used for investigation of thin layers, especially for the precise determination of both lattice parameter and stresses in thin films. The application of the method is illustrated on samples of TiN and ZrN coatings deposited on steel substrates and additionally covered with a thin film of Si or Ta or TaC powder used as an internal standard.

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 913
Author(s):  
Zhimao Wang ◽  
Jean-Luc Grosseau-Poussard ◽  
Benoît Panicaud ◽  
Guillaume Geandier ◽  
Pierre-Olivier Renault ◽  
...  

In order to clarify the mechanical features of a metal under thermal cyclic loading for the system Ni30Cr-Cr2O3, a specific study has been carried out. In the present work, the residual stresses in both the metal and the oxide layer have been investigated. An adapted method is applied to process the experimental results that were obtained by using in-situ high temperature synchrotron diffraction at European Synchrotron Radiation Facility. The sin2ψ analysis provides information about the stress in metal and oxide. X-ray diffraction provides also the lattice parameter between crystallographic planes in the metal. To obtain correct stress values, a correction method is also proposed taking into account different discrepancies sources to ensure the equation of mechanical balance.


1983 ◽  
Vol 16 (2) ◽  
pp. 183-191 ◽  
Author(s):  
D. Louër ◽  
J. P. Auffrédic ◽  
J. I. Langford ◽  
D. Ciosmak ◽  
J. C. Niepce

The Fourier and variance methods are used to analyse the breadths of X-ray diffraction peaks from ZnO powder obtained from the thermal decomposition of Zn3(OH)4(NO3)2. The shape, size, distribution of size and orientation of the crystallites are determined. It is found that the form is markedly anisotropic and that on average the crystallites may be regarded as cylinders with a diameter of about 110 Å and height about 240 Å, but that they are in fact right prisms whose cross section is an irregular hexagon. There is excellent agreement between the experimental results and the predictions of line-broadening theory, with quantitative confirmation from electron micrographs of the sample.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Alexandra Carvalho ◽  
Mariana C. F. Costa ◽  
Valeria S. Marangoni ◽  
Pei Rou Ng ◽  
Thi Le Hang Nguyen ◽  
...  

We show that the degree of oxidation of graphene oxide (GO) can be obtained by using a combination of state-of-the-art ab initio computational modeling and X-ray photoemission spectroscopy (XPS). We show that the shift of the XPS C1s peak relative to pristine graphene, ΔEC1s, can be described with high accuracy by ΔEC1s=A(cO−cl)2+E0, where c0 is the oxygen concentration, A=52.3 eV, cl=0.122, and E0=1.22 eV. Our results demonstrate a precise determination of the oxygen content of GO samples.


1972 ◽  
Vol 9 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Calvert C. Bristol

X-ray powder diffraction methods, successful in quantitative determination of silicate minerals in fine-grained rocks, have been applied to the determination of calcite, dolomite, and magnesite in greenschist facies meta-volcanic rocks. Internal standard graphs employing two standards (NaCl and Mo) have been determined.Carbonate mineral modes (calcite and dolomite) for 6 greenschist facies meta-volcanic rocks obtained by the X-ray powder method have been compared to normative carbonate mineral contents calculated for the same rocks. This comparison showed a maximum variation of 7.7 wt.% between the X-ray modes and the normative carbonate mineral contents of the rocks. Maximum standard deviation for the X-ray modes of these rocks was equivalent to 4.4 wt.%.


2018 ◽  
Vol 15 (1) ◽  
pp. 46
Author(s):  
Sundami Restiana ◽  
Ari Sulistyo Rini

Visualization of crystal structures and simulation of X-ray diffraction patterns of perovskite ceramic was successfully performed by VESTA software programs. The purpose of this research is to obtain the relation of lattice parameter, and composition to the diffraction pattern. The software program produces crystal structure information and a representative X-ray diffraction pattern for the ceramic materials. The program needs several input parameters such as the coordinates of each constituent atom, lattice parameters, and space symmetry. The obtained output of the software program are in the form of diffraction pattern graph and crystal structure data which gives the description of the profile and type (phase) of ceramic material. The results showed that the peak position and intensity of the diffraction pattern are influenced by the arrangement of  the atoms within the unit cell. The addition of impurity atoms such as Sr on the Ba side in BaTiO3 causes the BaTiO3 structure changes from Orthorombic (a≠b≠c) to Tetragonal (a=b≠c) structure. Based on the simulation, it can be predicted that the critical concentration of the change of structure occur at Sr concentration about 0.4.


Sign in / Sign up

Export Citation Format

Share Document