A hypothesis for the 2007 dengue outbreak in Singapore

2009 ◽  
Vol 138 (7) ◽  
pp. 951-957 ◽  
Author(s):  
E. MASSAD ◽  
F. A. B. COUTINHO ◽  
S. MA ◽  
M. N. BURATTINI

SUMMARYA previous mathematical model explaining dengue in Singapore predicted a reasonable outbreak of about 6500 cases for 2006 and a very mild outbreak with about 2000 cases for 2007. However, only 3051 cases were reported in 2006 while more than 7800 were reported in the first 44 weeks of 2007. We hypothesized that the combination of haze with other local sources of particulate matter had a significant impact on mosquito life expectancy, significantly increasing their mortality rate. To test the hypothesis a mathematical model based on the reproduction number of dengue fever and aimed at comparing the impact of several possible alternative control strategies was proposed. This model also aimed at contributing to the understanding of the causes of dengue resurgence in Singapore in the last decade. The model's simulation demonstrated that an increase in mosquito mortality in 2006 and either a reduction in mortality or an increase in the carrying capacity of mosquitoes in 2007 explained the patterned observed in Singapore. Based on the model's simulation we concluded that the fewer than expected number of dengue cases in Singapore in 2006 was caused by an increase in mosquito mortality due to the disproportionate haze affecting the country that year and that particularly favourable environmental conditions in 2007 propitiated mosquitoes with a lower mortality rate, which explains the greater than expected number of dengue cases in 2007. Whether our hypothesis is plausible or not should be debated further.

2020 ◽  
Author(s):  
Fulgensia Kamugisha Mbabazi ◽  
Yahaya Gavamukulya ◽  
Richard Awichi ◽  
Peter Olupot–Olupot ◽  
Samson Rwahwire ◽  
...  

AbstractThe human–infecting corona virus disease (COVID–19) caused by the novel severe acute respiratory syndrome corona virus 2 (SARS–CoV–2) was declared a global pandemic on March 11th, 2020. Current human deaths due to the infection have raised the threat globally with only 1 African country free of Virus (Lesotho) as of May 6th, 2020. Different countries have adopted different interventions at different stages of the outbreak, with social distancing being the first option while lock down the preferred option for flattening the curve at the peak of the pandemic. Lock down is aimed at adherence to social distancing, preserve the health system and improve survival. We propose a Susceptible–Exposed–Infected–Expected recoveries (SEIR) mathematical model to study the impact of a variety of prevention and control strategies Uganda has applied since the eruption of the pandemic in the country. We analyze the model using available data to find the infection–free, endemic/infection steady states and the basic reproduction number. In addition, a sensitivity analysis done shows that the transmission rate and the rate at which persons acquire the virus, have a positive influence on the basic reproduction number. On other hand the rate of evacuation by rescue ambulance greatly reduces the reproduction number. The results have potential to inform the impact and effect of early strict interventions including lock down in resource limited settings and social distancing.


2020 ◽  
Vol 376 (1818) ◽  
pp. 20190817 ◽  
Author(s):  
Joel Hellewell ◽  
Ellie Sherrard-Smith ◽  
Sheila Ogoma ◽  
Thomas S. Churcher

Malaria control in sub-Saharan Africa relies on the widespread use of long-lasting insecticidal nets (LLINs) or the indoor residual spraying of insecticide. Disease transmission may be maintained even when these indoor interventions are universally used as some mosquitoes will bite in the early morning and evening when people are outside. As countries seek to eliminate malaria, they can target outdoor biting using new vector control tools such as spatial repellent emanators, which emit airborne insecticide to form a protective area around the user. Field data are used to incorporate a low-technology emanator into a mathematical model of malaria transmission to predict its public health impact across a range of scenarios. Targeting outdoor biting by repeatedly distributing emanators alongside LLINs increases the chance of elimination, but the additional benefit depends on the level of anthropophagy in the local mosquito population, emanator effectiveness and the pre-intervention proportion of mosquitoes biting outdoors. High proportions of pyrethroid-resistant mosquitoes diminish LLIN impact because of reduced mosquito mortality. When mosquitoes are highly anthropophagic, this reduced mortality leads to more outdoor biting and a reduced additional benefit of emanators, even if emanators are assumed to retain their effectiveness in the presence of pyrethroid resistance. Different target product profiles are examined, which show the extra epidemiological benefits of spatial repellents that induce mosquito mortality. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Aristide G. Lambura ◽  
Gasper G. Mwanga ◽  
Livingstone Luboobi ◽  
Dmitry Kuznetsov

A deterministic mathematical model for the transmission and control of cointeraction of helminths and tuberculosis is presented, to examine the impact of helminth on tuberculosis and the effect of control strategies. The equilibrium point is established, and the effective reproduction number is computed. The disease-free equilibrium point is confirmed to be asymptotically stable whenever the effective reproduction number is less than the unit. The analysis of the effective reproduction number indicates that an increase in the helminth cases increases the tuberculosis cases, suggesting that the control of helminth infection has a positive impact on controlling the dynamics of tuberculosis. The possibility of bifurcation is investigated using the Center Manifold Theorem. Sensitivity analysis is performed to determine the effect of every parameter on the spread of the two diseases. The model is extended to incorporate control measures, and Pontryagin’s Maximum Principle is applied to derive the necessary conditions for optimal control. The optimal control problem is solved numerically by the iterative scheme by considering vaccination of infants for Mtb, treatment of individuals with active tuberculosis, mass drug administration with regular antihelminthic drugs, and sanitation control strategies. The results show that a combination of educational campaign, treatment of individuals with active tuberculosis, mass drug administration, and sanitation is the most effective strategy to control helminth-Mtb coinfection. Thus, to effectively control the helminth-Mtb coinfection, we suggest to public health stakeholders to apply intervention strategies that are aimed at controlling helminth infection and the combination of vaccination of infants and treatment of individuals with active tuberculosis.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Laila Massad Ribas ◽  
Vera Lucia Zaher ◽  
Helio Junji Shimozako ◽  
Eduardo Massad

We argue that the strategy of culling infected dogs is not the most efficient way to control zoonotic visceral leishmaniasis (ZVL) and that, in the presence of alternative control strategies with better potential results, official programs of compulsory culling adopted by some countries are inefficient and unethical. We base our arguments on a mathematical model for the study of control strategies against ZVL, which allows the comparison of the efficacies of 5, alternative strategies. We demonstrate that the culling program, previously questioned on both theoretical and practical grounds is the less effective control strategy. In addition, we show that vector control and the use of insecticide-impregnated dog collars are, by far, more efficient at reducing the prevalence of ZVL in humans.


Author(s):  
Chinedu Obasi ◽  
Collins Obiora ◽  
Godwin Mbah ◽  
Oluseye Olawuyi

While examination malpractice has been a recognized social problem among students, the control of the phenomenon remains a challenge. In this study, we formulate a mathematical model describing the population dynamics of examination malpractice among students. Initial insight into the dynamics of the model is gained by analyzing some important mathematical features of the model such as the basic malpractice number. The malpractice-free equilibrium and endemic equilibrium points of the model are shown to be locally asymptotically stable when the basic malpractice number is less than unity. This result implies that examination malpractice can be totally eradicated among students when the basic malpractice number is less than unity. To understand the impact of controlling this social problem, we extend the model to incorporate awareness campaign and disciplinary measure as control strategies in curtailing the act. Our analysis reveals that incorporating control strategies have some influence in reducing examination malpractice among students. Further analysis indicates that considering both control strategies simultaneously yields a better result in reducing examination malpractice and examination malpractice will grow faster when control strategies are not introduced.


2021 ◽  
Author(s):  
A. R. Alizad-Rahvar ◽  
M. Sadeghi

AbstractBackgroundIn a viral epidemic, the emergence of a novel strain with increased transmissibility (larger value of basic reproduction number R0) sparks the fear that the increase in transmissibility is likely to lead to an increase in disease severity. It is required to investigate if a new, more contagious strain will be necessarily dominant in the population and resulting in more disease severity.MethodsThe impact of the asymptomatic transmission and the emergence time of a more transmissible variant of a multi-strain viral disease on the disease prevalence, disease severity, and the dominant variant in an epidemic was investigated by a proposed 2-strain epidemic model, called 2-SEICARD model, that is an extension of the SEIRD model.ResultsThe simulation results showed that considering only R0, is insufficient to predict the outcome of a new, more contagious strain in the population. A more transmissible strain with a high fraction of asymptomatic cases can substantially reduce the mortality rate. If the emergence time of the new strain is closer to the start of the epidemic, the new, more contagious variant has more chance to win the viral competition and be the dominant strain; otherwise, despite being more contagious, it cannot dominate previous strains.ConclusionsThree factors of R0, the fraction of asymptomatic transmission, and the emergence time of the new strain are required to correctly determine the prevalence, disease severity, and the winner of the viral competition.


2017 ◽  
Vol 372 (1721) ◽  
pp. 20160302 ◽  
Author(s):  
Sebastian Funk ◽  
Iza Ciglenecki ◽  
Amanda Tiffany ◽  
Etienne Gignoux ◽  
Anton Camacho ◽  
...  

The Ebola epidemic in West Africa was stopped by an enormous concerted effort of local communities and national and international organizations. It is not clear, however, how much the public health response and behavioural changes in affected communities, respectively, contributed to ending the outbreak. Here, we analyse the epidemic in Lofa County, Liberia, lasting from March to November 2014, by reporting a comprehensive time line of events and estimating the time-varying transmission intensity using a mathematical model of Ebola transmission. Model fits to the epidemic show an alternation of peaks and troughs in transmission, consistent with highly heterogeneous spread. This is combined with an overall decline in the reproduction number of Ebola transmission from early August, coinciding with an expansion of the local Ebola treatment centre. We estimate that healthcare seeking approximately doubled over the course of the outbreak, and that isolation of those seeking healthcare reduced their reproduction number by 62% (mean estimate, 95% credible interval (CI) 59–66). Both expansion of bed availability and improved healthcare seeking contributed to ending the epidemic, highlighting the importance of community engagement alongside clinical intervention. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’.


2021 ◽  
Author(s):  
Emma S McBryde ◽  
Michael T Meehan ◽  
Jamie Sziklay ◽  
Adeshina Adekunle ◽  
Abdul Kuddus ◽  
...  

The Australian National Cabinet four-step plan to transition to post-pandemic re-opening begins with vaccination to achieve herd protection and protection of the health system against a surge in COVID-19 cases. Assuming a pre-vaccination reproduction number for the Delta variant of 5, we show that for the current Mixed program of vaccinating over 60s with AstraZeneca and 16-60s with Pfizer we would not achieve herd immunity. We would need to cover 85% of the population (including many 5-16 year-olds to achieve herd immunity). At lower reproduction number of 3 and our current Mixed strategy, we can achieve herd immunity without vaccinating 5-15 year olds. This will be achieved at a 60% coverage pursuing a strategy targetting high transmitters or 70% coverage using a strategy targetting the vulnerable first. A reproduction number of 7 precludes achieving herd immunity, however vaccination is able to prevent 75% of deaths compared with no vaccination. We also examine the impact of vaccination on death in the event that herd immunity is not achieved. Direct effects of vaccination on reducing death are very good for both Pfizer and AstraZeneca vaccines. However we estimate that the Mixed or Pfizer program performs better than the AstraZeneca program. Furthermore, vaccination levels below the herd immunity threshold can lead to substantial (albeit incomplete) indirect protection for both vaccinated and unvaccinated populations. Given the potential for not reaching herd immunity, we need to consider what level of severe disease and death is acceptable, balanced against the consequences of ongoing aggressive control strategies.


2020 ◽  
Author(s):  
Seth Blumberg ◽  
Anna Borlase ◽  
Joaquin M Prada ◽  
Anthony W Solomon ◽  
Paul Emerson ◽  
...  

AbstractBackgroundProgress towards elimination of trachoma as a public health problem has been substantial, but the COVID-19 pandemic has disrupted community-based control efforts.MethodsWe use a susceptible-infected model to estimate the impact of delayed distribution of azithromycin treatment on the prevalence of active trachoma.ResultsWe identify three distinct scenarios for geographic districts depending on whether the basic reproduction number and the treatment-associated reproduction number are above or below a value of one. We find that when the basic reproduction number is below one, no significant delays in disease control will be caused. However, when the basic reproduction number is above one, significant delays can occur. In most districts a year of COVID-related delay can be mitigated by a single extra round of mass drug administration. However, supercritical districts require a new paradigm of infection control because the current strategies will not eliminate disease.ConclusionIf the pandemic can motivate judicious, community-specific implementation of control strategies, global elimination of trachoma as a public health problem could be accelerated.


Sign in / Sign up

Export Citation Format

Share Document