scholarly journals Global visual processing in macaques studied using Kanizsa illusory shapes

2010 ◽  
Vol 27 (3-4) ◽  
pp. 131-138 ◽  
Author(s):  
KIMBERLY A. FELTNER ◽  
LYNNE KIORPES

AbstractThe ability to extract form information from a visual scene, for object recognition or figure–ground segregation, is a fundamental visual system function. Many studies of nonhuman primates have addressed the neural mechanisms involved in global form processing, but few have sought to demonstrate this ability behaviorally. In this study, we probed global visual processing in macaque monkeys (Macaca nemestrina) using classical Kanizsa illusory shapes as an assay of global form perception. We trained three monkeys on a “similarity match-to-sample” form discrimination task, first with complete forms embedded in fields of noncontour-inducing “pacman” elements. We then tested them with classic Kanizsa illusory shapes embedded in fields of randomly oriented elements. Two of the three subjects reached our criterion performance level of 80% correct or better on four of five illusory test conditions, demonstrating clear evidence of Kanizsa illusory form perception; the third subject mastered three of five conditions. Performance limits for illusory form discrimination were obtained by manipulating support ratio and by measuring threshold for discriminating “fat” and “thin” illusory squares. Our results indicate that macaque monkeys are capable of global form processing similarly to humans and that the perceptual mechanisms for “filling-in” contour gaps exist in macaques as they do in humans.

2012 ◽  
Vol 63 ◽  
pp. 34-42 ◽  
Author(s):  
Lynne Kiorpes ◽  
Tracy Price ◽  
Cynthia Hall-Haro ◽  
J. Anthony Movshon

2019 ◽  
Vol 122 (6) ◽  
pp. 2243-2258 ◽  
Author(s):  
Katerina Acar ◽  
Lynne Kiorpes ◽  
J. Anthony Movshon ◽  
Matthew A. Smith

Amblyopia, a disorder in which vision through one of the eyes is degraded, arises because of defective processing of information by the visual system. Amblyopia often develops in humans after early misalignment of the eyes (strabismus) and can be simulated in macaque monkeys by artificially inducing strabismus. In such amblyopic animals, single-unit responses in primary visual cortex (V1) are appreciably reduced when evoked by the amblyopic eye compared with the other (fellow) eye. However, this degradation in single V1 neuron responsivity is not commensurate with the marked losses in visual sensitivity and resolution measured behaviorally. Here we explored the idea that changes in patterns of coordinated activity across populations of V1 neurons may contribute to degraded visual representations in amblyopia, potentially making it more difficult to read out evoked activity to support perceptual decisions. We studied the visually evoked activity of V1 neuronal populations in three macaques ( Macaca nemestrina) with strabismic amblyopia and in one control animal. Activity driven through the amblyopic eye was diminished, and these responses also showed more interneuronal correlation at all stimulus contrasts than responses driven through the fellow eye or responses in the control animal. A decoding analysis showed that responses driven through the amblyopic eye carried less visual information than other responses. Our results suggest that part of the reduced visual capacity of amblyopes may be due to changes in the patterns of functional interaction among neurons in V1. NEW & NOTEWORTHY Previous work on the neurophysiological basis of amblyopia has largely focused on relating behavioral deficits to changes in visual processing by single neurons in visual cortex. In this study, we recorded simultaneously from populations of primary visual cortical (V1) neurons in macaques with amblyopia. We found changes in the strength and pattern of shared response variability between neurons. These changes in neuronal interactions could impair the visual representations of V1 populations driven by the amblyopic eye.


2019 ◽  
pp. 402-433
Author(s):  
Marije SOTO ◽  
Juliana Novo GOMES ◽  
Aniela Improta FRANÇA ◽  
Aniela Gesualdi MANHÃES

This study zooms in on the specialization of visual processing that underlies grapheme and word form processing, and presents an electrophysiological experiment performed with 8th graders in a public state elementary school. The methodology of Event Related Brain Potential (EEG-ERP) was used to collect and analyze the N170 component, a neurophysiological signature sensitive to grapheme and word form processing. The test results indicated that, in this group, higher performance in grapheme recognition was not associated to a reduced difference between ERP wave amplitudes in response to word and false font stimuli, but instead to a clear left lateralization of print sensitive N170 responses. Differently from most ERP studies that uses the grand-averaging of all participants’ ERP responses, the current analysis also investigated individual performance of participants. In this modality, the varying levels of intensity and lateralization of the neurophysiological response indicate that a large portion of the participants remain in the process of obtaining reading fluency long after having started to learn how to read. The qualitative correlation between performance and the degree of lateralization is, thus, a novel and promising measurement involving the N170 component as a descriptive and predictive tool in the monitoring of reading acquisition stages.


2019 ◽  
Vol 34 (6) ◽  
pp. 1048-1048
Author(s):  
T Seider ◽  
E Porges ◽  
A Woods ◽  
R Cohen

Abstract Objective The study was conducted to determine age-associated changes in functional brain response, measured with fMRI, during visual discrimination with regard to three elementary components of visual perception: shape, location, and velocity. A secondary aim was to validate the method used to isolate the hypothesized brain regions associated with these perceptual functions. Method Items from the Visual Assessment Battery (VAB), a simultaneous match-to-sample task, assessed visual discrimination in 40 healthy adults during fMRI. Participants were aged 51-91 and recruited from a larger community sample for a study on normal aging. The tasks were designed to isolate neural recruitment during discrimination of either location, shape, or velocity by using tasks that were identical aside from the perceptual skill required to complete them. Results The Location task uniquely activated the dorsal visual processing stream, the Shape task the ventral stream, and the Velocity task V5/MT. Greater age was associated with greater neural recruitment, particularly in frontal areas (uncorrected voxel-level p < .001, family-wise error cluster-level p□.05). Conclusions Results validated the specialization of brain regions for spatial, perceptual, and movement discriminations and the use of the VAB to assess functioning localized to these regions. Anterior neural recruitment during visual discrimination increases with age.


2006 ◽  
Vol 46 (18) ◽  
pp. 2834-2841 ◽  
Author(s):  
Jane E. Aspell ◽  
John Wattam-Bell ◽  
Oliver Braddick

2008 ◽  
Vol 25 (5-6) ◽  
pp. 675-684 ◽  
Author(s):  
CYNTHIA HALL-HARO ◽  
LYNNE KIORPES

AbstractWe studied the development of sensitivity to complex motion using plaid patterns. We hypothesized, based on neurophysiological data showing a dearth of pattern direction–selective (PDS) cells in area medial temporal (MT) of infant macaques, that sensitivity to pattern motion would develop later than other forms of global motion sensitivity. We tested 10 macaque monkeys (Macaca nemestrina) ranging in age from 7 weeks to 109–160 weeks (adult). The monkeys discriminated horizontal from vertical pattern motion; sensitivity for one-dimensional (1D) direction discrimination and detection were tested as control tasks. The results show that pattern motion discrimination ability develops relatively late, between 10 and 18 weeks, while performance on the 1D control tasks was excellent at the earliest test ages. Plaid discrimination performance depends on both the speed and spatial scale of the underlying patterns. However, development is not limited by contrast sensitivity. These results support the idea that pattern motion perception depends on a different mechanism than other forms of global motion perception and are consistent with the idea that the representation of PDS neurons in MT may limit the development of complex motion perception.


Sign in / Sign up

Export Citation Format

Share Document