scholarly journals Experimental determination of reflectance spectra of Antarctic krill (Euphausia superba) in the Scotia Sea

2021 ◽  
pp. 1-13
Author(s):  
Anna Belcher ◽  
Sophie Fielding ◽  
Andrew Gray ◽  
Lauren Biermann ◽  
Gabriele Stowasser ◽  
...  

Abstract Antarctic krill are the dominant metazoan in the Southern Ocean in terms of biomass; however, their wide and patchy distribution means that estimates of their biomass are still uncertain. Most currently employed methods do not sample the upper surface layers, yet historical records indicate that large surface swarms can change the water colour. Ocean colour satellites are able to measure the surface ocean synoptically and should theoretically provide a means for detecting and measuring surface krill swarms. Before we can assess the feasibility of remote detection, more must be known about the reflectance spectra of krill. Here, we measure the reflectance spectral signature of Antarctic krill collected in situ from the Scotia Sea and compare it to that of in situ water. Using a spectroradiometer, we measure a strong absorption feature between 500 and 550 nm, which corresponds to the pigment astaxanthin, and high reflectance in the 600–700 nm range due to the krill's red colouration. We find that the spectra of seawater containing krill is significantly different from seawater only. We conclude that it is tractable to detect high-density swarms of krill remotely using platforms such as optical satellites and unmanned aerial vehicles, and further steps to carry out ground-truthing campaigns are now warranted.

2009 ◽  
Vol 31 (10) ◽  
pp. 1265-1281 ◽  
Author(s):  
K. A. Cresswell ◽  
G. A. Tarling ◽  
S. E. Thorpe ◽  
M. T. Burrows ◽  
J. Wiedenmann ◽  
...  

2019 ◽  
Vol 37 (3) ◽  
pp. 1080-1089 ◽  
Author(s):  
Guoping Zhu ◽  
Zijun Liu ◽  
Yang Yang ◽  
Zhen Wang ◽  
Wenjie Yang ◽  
...  

2019 ◽  
Vol 247 ◽  
pp. 332-339 ◽  
Author(s):  
José Seco ◽  
José C. Xavier ◽  
João P. Coelho ◽  
Bárbara Pereira ◽  
Geraint Tarling ◽  
...  

2005 ◽  
Vol 62 (1) ◽  
pp. 25-32 ◽  
Author(s):  
David A. Demer ◽  
Stéphane G. Conti

Abstract Antarctic krill, Euphausia superba, comprises the foundation of the foodweb in the Southern Ocean and is the target of a large fishery. Recently, the total abundance of krill in the Scotia Sea was estimated from an international echosounder and net survey (CCAMLR 2000) to be 44.3 million metric tonnes (Mt; CV 11.4%) (Hewitt et al., 2002). The new biomass estimate prompted the Antarctic Treaty's Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) to revise the precautionary catch level for krill in the area from 1.5 to 4 Mt (SC-CAMLR, 2000). These survey results are based on the total echo energy attributed to krill, scaled by the Greene et al. (1991) model of krill acoustical reflectivity or target strength (TS). Presented here is a re-analysis of the CCAMLR 2000 data incorporating recent improvements in the characterization of krill TS. The results indicate that the estimated krill biomass in the Scotia Sea may be as high as 192.4 Mt (CV = 11.7%), or as low as 109.4 Mt (CV = 10.4%), depending solely on the expected distribution of krill orientations. The new Stochastic, Distorted-Wave, Born-Approximation (SDWBA) TS model solved with an empirically estimated distribution of in situ orientations leads to a krill-biomass estimate that is nearly 2.5 times the previous estimate. In consequence, revisions may be warranted of the standard krill TS model, the CCAMLR 2000 biomass estimate, and the associated precautionary catch level for krill in the Scotia Sea.


2012 ◽  
Vol 25 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Heather J. Lynch ◽  
Norman Ratcliffe ◽  
Jennifer Passmore ◽  
Emma Foster ◽  
Philip N. Trathan

AbstractKrill consumption by natural predators represents a critical link between surveys and models of standing krill biomass and the design of a sustainable krill fishery for the Scotia Sea. Antarctic krill (Euphausia superba) is a significant component of diet for penguins breeding in this region and, consequently, uncertainties regarding penguin population abundances contribute to uncertainties in krill predation estimates. We use a comprehensive database of Antarctic penguin abundances to identify 14 breeding colonies that contribute most significantly to uncertainty regarding the total number of pygoscelid penguins breeding in this region. We find that a high quality survey of Zavodovski Island alone would decrease uncertainty in total population by 24.8%, whereas high quality surveys of all 14 “high-influence” locations would decrease uncertainty by almost 72%. Updated population estimates at these sites should be considered top priority for future fieldwork in the region. Our results are based on a robust quantitative method for assessing data priorities in estimating krill consumption that is easily extended to other groups of krill predators.


Sign in / Sign up

Export Citation Format

Share Document