The relationship between seasonal water level fluctuation and habitat availability for wintering waterbirds at Shengjin Lake, China
SummaryConservation plans for waterbirds in periodically flooded wetlands should be based on a deep understanding of the relationship between habitat availability and the hydrological regime. Using waterbird surveys and remotely sensed images, we investigated how habitat availability for wintering waterbirds was regulated by seasonal water level fluctuation at Shengjin Lake in the lower Yangtze River floodplain, which is an important wintering area along the East Asian-Australasian Flyway. We recorded 52 waterbird species during three field surveys, and categorised them into four groups based on their foraging preferences: grassland, mudflats, shallow water, or deep water. Habitat availability for the four groups was significantly influenced by fluctuations in water level. Habitat for deep-water feeders dominated the lake throughout the year, despite contracting during the wintering season. Water recession during winter exposed more diverse riparian habitats that showed high spatial heterogeneity at the landscape level, with the Upper Lake providing the most suitable habitats for the most diverse and abundant waterbirds. It is worth noting that the water level was regulated highly for aquaculture during the early wintering period, impeding access to suitable habitats for the early-arriving waterbirds that foraged in the riparian mudflats and grassland. Furthermore, rapid water recession from the opening of a sluice gate allowed the exposed moist mudflats to dry up quickly, reducing its suitability for shorebirds and cranes. For effective wintering waterbird conservation in the ephemeral lacustrine wetlands in the Yangtze River floodplain, we suggest stepwise water recession plans, together with the recovery of the aquatic vegetation community and reduction in high-density aquaculture, to synchronise the exposure of foraging habitats with the migration phenology of different waterbird species.