Operations on records

1991 ◽  
Vol 1 (1) ◽  
pp. 3-48 ◽  
Author(s):  
Luca Cardelli ◽  
John C. Mitchell

We define a simple collection of operations for creating and manipulating record structures, where records are intended as finite associations of values to labels. A second-order type system over these operations supports both subtyping and polymorphism. We provide typechecking algorithms and limited semantic models.Our approach unifies and extends previous notions of records, bounded quantification, record extension, and parametrization by row-variables. The general aim is to provide foundations for concepts found in object-oriented languages, within a framework based on typed lambda-calculus.

1999 ◽  
Vol 9 (6) ◽  
pp. 719-739 ◽  
Author(s):  
VENANZIO CAPRETTA ◽  
SILVIO VALENTINI

In this paper we describe a method for proving the normalization property for a large variety of typed lambda calculi of first and second order, which is based on a proof of equivalence of two deduction systems. We first illustrate the method on the elementary example of simply typed lambda calculus, and then we show how to extend it to a more expressive dependent type system. Finally we use it to prove the normalization theorem for Girard's system F.


1992 ◽  
Vol 2 (1) ◽  
pp. 55-91 ◽  
Author(s):  
Pierre-Louis Curien ◽  
Giorgio Ghelli

A subtyping relation ≤ between types is often accompanied by a typing rule, called subsumption: if a term a has type T and T≤U, then a has type U. In presence of subsumption, a well-typed term does not codify its proof of well typing. Since a semantic interpretation is most naturally defined by induction on the structure of typing proofs, a problem of coherence arises: different typing proofs of the same term must have related meanings. We propose a proof-theoretical, rewriting approach to this problem. We focus on F≤, a second-order lambda calculus with bounded quantification, which is rich enough to make the problem interesting. We define a normalizing rewriting system on proofs, which transforms different proofs of the same typing judgement into a unique normal proof, with the further property that all the normal proofs assigning different types to a given term in a given environment differ only by a final application of the subsumption rule. This rewriting system is not defined on the proofs themselves but on the terms of an auxiliary type system, in which the terms carry complete information about their typing proof. This technique gives us three different results:— Any semantic interpretation is coherent if and only if our rewriting rules are satisfied as equations.— We obtain a proof of the existence of a minimum type for each term in a given environment.— From an analysis of the shape of normal form proofs, we obtain a deterministic typechecking algorithm, which is sound and complete by construction.


2008 ◽  
Vol 18 (3) ◽  
pp. 285-331 ◽  
Author(s):  
CHIERI SAITO ◽  
ATSUSHI IGARASHI ◽  
MIRKO VIROLI

AbstractFamily polymorphism has been proposed for object-oriented languages as a solution to supporting reusable yet type-safe mutually recursive classes. A key idea of family polymorphism is the notion of families, which are used to group mutually recursive classes. In the original proposal, due to the design decision that families are represented by objects, dependent types had to be introduced, resulting in a rather complex type system. In this article, we propose a simpler solution oflightweightfamily polymorphism, based on the idea that families are represented by classes rather than by objects. This change makes the type system significantly simpler without losing much expressive power of the language. Moreover, “family-polymorphic” methods now take a form of parametric methods; thus, it is easy to apply method type argument inference as in Java 5.0. To rigorously show that our approach is safe, we formalize the set of language features on top of Featherweight Java and prove that the type system is sound. An algorithm for type inference for family-polymorphic method invocations is also formalized and proved to be correct. Finally, a formal translation by erasure to Featherweight Java is presented; it is proved to preserve typing and execution results, showing that our new language features can be implemented in Java by simply extending the compiler.


1990 ◽  
Vol 19 (305) ◽  
Author(s):  
Jens Palsberg ◽  
Michael I. Schwartzbach

We introduce substitution polymorphism as a new basis for typed object-oriented languages. While avoiding subtypes and polymorphic types, this mechanism enables optimal static type-checking of generic classes and polymorphic functions. The novel idea is to view a class as having a family of implicit subclasses, each of which is obtained through a substitution of types. This allows instantiation of a generic class to be merely subclassing and resolves the problems in the <em> Eiffel</em> type system reported by Cook. All subclasses, including the implicit ones, can reuse the code implementing their superclass.


10.29007/3n54 ◽  
2018 ◽  
Author(s):  
Thomas Icard ◽  
Lawrence Moss

This paper adds monotonicity and antitonicity information to the typed lambda calculus, thereby providing a foundation for the Monotonicity Calculus first developed by van Benthem and others. We establish properties of the type system, propose a syntax, semantics, and proof calculus, and prove completeness for the calculus with respect to hierarchies of monotone and antitone functions over base preorders.


1990 ◽  
Vol 19 (341) ◽  
Author(s):  
Jens Palsberg ◽  
Michael I. Schwartzbach

We present a new type system for object-oriented languages with assignments. Types are sets of classes, subtyping is set inclusion, and genericity is class substitution. The type system enables separate compilation, and unifies, generalizes, and simplifies the type systems underlying SIMULA/BETA, C++, EIFFEL, and Typed Smalltalk, and the type system with type substitutions proposed by Palsberg and Schwartzbach, Classes and types are both modeled as node-labeled, ordered regular trees; this allows an efficient type-checking algorithm.


2021 ◽  
Vol 31 ◽  
Author(s):  
AKIMASA MORIHATA

Abstract Parallel reduction is a major component of parallel programming and widely used for summarisation and aggregation. It is not well understood, however, what sorts of non-trivial summarisations can be implemented as parallel reductions. This paper develops a calculus named λAS, a simply typed lambda calculus with algebraic simplification. This calculus provides a foundation for studying a parallelisation of complex reductions by equational reasoning. Its key feature is δ abstraction. A δ abstraction is observationally equivalent to the standard λ abstraction, but its body is simplified before the arrival of its arguments using algebraic properties such as associativity and commutativity. In addition, the type system of λAS guarantees that simplifications due to δ abstractions do not lead to serious overheads. The usefulness of λAS is demonstrated on examples of developing complex parallel reductions, including those containing more than one reduction operator, loops with conditional jumps, prefix sum patterns and even tree manipulations.


2015 ◽  
Vol 27 (2) ◽  
pp. 94-122 ◽  
Author(s):  
DAVIDE ANCONA ◽  
PAOLA GIANNINI ◽  
ELENA ZUCCA

We extend the simply-typed lambda-calculus with a mechanism for dynamic and incremental rebinding of code. Fragments of open code which can be dynamically rebound are values. Differently from standard static binding, which is done on a positional basis, rebinding is done on a nominal basis, that is, free variables in open code are associated with names which do not obey α-equivalence. Moreover, rebinding is incremental, that is, just a subset of names can be rebound, making possible code specialization, and rebinding can even introduce new names. Finally, rebindings, which are associations between names and terms, are first-class values, and can be manipulated by operators such as overriding and renaming. We define a type system in which the type for a rebinding, in addition to specify an association between names and types (similarly to record types), is also annotated. The annotation says whether or not the domain of the rebinding having this type may contain more names than the ones that are specified in the type. We show soundness of the type system.


Sign in / Sign up

Export Citation Format

Share Document