Dynamics of heart rate variability analysed through nonlinear and linear dynamics is already impaired in young type 1 diabetic subjects
AbstractBackgroundAutonomic diabetic neuropathy is one of the most common complications of type 1 diabetes mellitus, and studies using heart rate variability to investigate these individuals have shown inconclusive results regarding autonomic nervous system activation.AimsTo investigate the dynamics of heart rate in young subjects with type 1 diabetes mellitus through nonlinear and linear methods of heart rate variability.MethodsWe evaluated 20 subjects with type 1 diabetes mellitus and 23 healthy control subjects. We obtained the following nonlinear indices from the recurrence plot: recurrence rate (REC), determinism (DET), and Shanon entropy (ES), and we analysed indices in the frequency (LF and HF in ms2 and normalised units – nu – and LF/HF ratio) and time domains (SDNN and RMSSD), through analysis of 1000 R–R intervals, captured by a heart rate monitor.ResultsThere were reduced values (p<0.05) for individuals with type 1 diabetes mellitus compared with healthy subjects in the following indices: DET, REC, ES, RMSSD, SDNN, LF (ms2), and HF (ms2). In relation to the recurrence plot, subjects with type 1 diabetes mellitus demonstrated lower recurrence and greater variation in their plot, inter-group and intra-group, respectively.ConclusionYoung subjects with type 1 diabetes mellitus have autonomic nervous system behaviour that tends to randomness compared with healthy young subjects. Moreover, this behaviour is related to reduced sympathetic and parasympathetic activity of the autonomic nervous system.