Open field stress testing: finally an optimal method in young children? Reference values for mobile cardiopulmonary exercise testing in healthy children aged 4–8 years

2021 ◽  
pp. 1-5
Author(s):  
Philipp Kalden ◽  
Isabelle Schoeffl ◽  
Kathrin Rottermann ◽  
Florian Loeffelbein ◽  
Anna Michaelis ◽  
...  

Abstract Introduction: Cardiopulmonary exercise testing represents the diagnostic tool for determining cardiopulmonary function. Especially in small children, exercise testing is extremely challenging. To address this problem, field testing has been implemented using small mobile devices. This study aims at using this protocol for developing normal values for cardiopulmonary exercise testing in very young children. Material and methods: Healthy children aged 4–8 years were recruited. All children were tested according to an outdoor protocol, in which they were instructed to walk, then run slowly, then a little harder and at last run at full speed. Each step lasted for 2 minutes, except the last step, in which the children were instructed to maintain as long as possible. Results: A total of 104 children (64 female/35 male, mean age 6.6 years) performed outdoor cardiopulmonary exercise testing using a mobile device. Almost all tests were completed successfully (95%). Despite a predominance of female study subjects, anthropometric values did not differ between boys and girls. V̇O2peak/kg, respiratory exchange ratio, VT1, heart rate at VT1, and time of exercise were also comparable between sexes. Generally, a tendency of higher maximal oxygen uptake could be observed in older children. Conclusion: Open field mobile cardiopulmonary exercise testing represents a novel approach in very young children. In this study, we were able to determine normal values of maximal oxygen uptake and OUES/kg for 4–8-year-old children. The method is easy to achieve and safe.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
Richard Davies ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery. Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices. Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 males) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R = 0.57 (CI 0.29–0.76), R = 0.59 (CI 0.31–0.77) and R = 0.62 (CI 0.35–0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01–0.64), R = 0.39 (CI 0.04–0.66) and R = 0.42 (CI 0.07–0.68) respectively) and peak work (R = 0.56 (CI 0.27–0.75), R = 0.48 (CI 0.17–0.70) and R = 0.50 (CI 0.2–0.72) respectively). Receiver operator curve (ROC) analysis for direct and self-reported measures of 7-day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work. Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment. Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24 January 2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.


2002 ◽  
Vol 103 (6) ◽  
pp. 543-552 ◽  
Author(s):  
Darrel P. FRANCIS ◽  
L. Ceri DAVIES ◽  
Keith WILLSON ◽  
Roland WENSEL ◽  
Piotr PONIKOWSKI ◽  
...  

Metabolic exercise testing is valuable in patients with chronic heart failure (CHF), but periodic breathing may confound the measurements. We aimed to examine the effects of periodic breathing on the measurement of oxygen uptake (VO2) and respiratory exchange ratio (RER). First, we measured the effects of different averaging procedures on peak VO2 and RER values in 122 patients with CHF undergoing cardiopulmonary exercise testing. Secondly, we studied the effects of periodic breathing on VO2 and RER in healthy volunteers performing computer-guided periodic breathing. Thirdly, we used a Fourier analysis to study the effects of periodic breathing on gas exchange measurements. The first part of the study showed that 1min moving window gave a mean peak VO2 of 13.8mlμmin-1μkg-1 for the CHF patients. A 15s window gave significantly higher values. The difference averaged 1.0mlμmin-1μkg-1 (P<0.0001), but varied widely: 41% of subjects showed a difference greater than 1.0mlμmin-1μkg-1. RER values were also higher by an average of 0.09 (P<0.0001); in 20% of subjects the difference was greater than 0.10. In the second part of the study, we found artefactual elevations of peak VO2 (without averaging) of 2.9mlμmin-1μkg-1 (P<0.01) and of peak RER of 0.13 (P<0.001), which were still significant when 30s averaging was applied [Δ(peak VO2) = 1.8mlμmin-1μkg-1, P<0.01; ΔRER = 0.08, P<0.001]. The third, theoretical, part of the study showed that values of carbon dioxide output and VO2 oscillate with different phases and amplitudes, resulting in oscillations in their ratio, RER. Averaging over 15s or 30s can be expected to give only 10% or 36% attenuation respectively. Thus periodic breathing causes variable artefactual elevations of measured peak VO2 and RER, which can be attenuated by using longer averaging periods. Clinical reports and research publications describing peak VO2 in CHF should be accompanied by details of the averaging technique used.


Lung Cancer ◽  
2009 ◽  
Vol 66 (1) ◽  
pp. 85-88 ◽  
Author(s):  
Erdem Kasikcioglu ◽  
Alper Toker ◽  
Serhan Tanju ◽  
Piyer Arzuman ◽  
Abidin Kayserilioglu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document