scholarly journals Unilateral Stroke: Computer-based Assessment Uncovers Non-Lateralized and Contralesional Visuoattentive Deficits

Author(s):  
Sanna Villarreal ◽  
Matti Linnavuo ◽  
Raimo Sepponen ◽  
Outi Vuori ◽  
Mario Bonato ◽  
...  

Abstract Objective: Patients with unilateral stroke commonly show hemispatial neglect or milder contralesional visuoattentive deficits, but spatially non-lateralized visuoattentive deficits have also been reported. The aim of the present study was to compare spatially lateralized (i.e., contralesional) and non-lateralized (i.e., general) visuoattentive deficits in left and right hemisphere stroke patients. Method: Participants included 40 patients with chronic unilateral stroke in either the left hemisphere (LH group, n = 20) or the right hemisphere (RH group, n = 20) and 20 healthy controls. To assess the contralesional deficits, we used a traditional paper-and-pencil cancellation task (the Bells Test) and a Lateralized Targets Computer Task. To assess the non-lateralized deficits, we developed a novel large-screen (173 × 277 cm) computer method, the Ball Rain task, with moving visual stimuli and fast-paced requirements for selective attention. Results: There were no contralesional visuoattentive deficits according to the cancellation task. However, in the Lateralized Targets Computer Task, RH patients missed significantly more left-sided than right-sided targets in bilateral trials. This omission distribution differed significantly from those of the controls and LH patients. In the assessment of non-lateralized attention, RH and LH patients missed significantly more Ball Rain targets than controls in both the left and right hemifields. Conclusions: Computer-based assessment sensitively reveals various aspects of visuoattentive deficits in unilateral stroke. Patients with either right or left hemisphere stroke demonstrate non-lateralized visual inattention. In right hemisphere stroke, these symptoms can be accompanied by subtle contralesional visuoattentive deficits that have remained unnoticed in cancellation task.

2013 ◽  
Vol 24 (4) ◽  
pp. 239-252 ◽  
Author(s):  
Johanna Theiling ◽  
Franz Petermann ◽  
Monika Daseking

This study aims to identify WAIS-IV profiles in unilateral ischemic stroke patients in rehabilitation (n = 107) compared to matched controls, to determine if patients demonstrate lateralized cognitive impairment, and to investigate whether aphasia has an additional effect on language and working memory subtests. Analyses revealed impairment in performance of stroke patients relative to controls, while effect of left-hemisphere stroke were large on subtests with language and processing speed demands, and of right-hemisphere stroke on subtests with visuo-spatial and processing speed demands. Aphasia had an additional effect on language, working memory and processing speed subtests. Findings confirm the pattern of cognitive deficits found with older versions of the WAIS and suggest that the WAIS-IV detects cognitive deficits in stroke patients.


2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Kyoung Lee ◽  
Sang Yoo ◽  
Eun Ji ◽  
Woo Hwang ◽  
Yeun Yoo ◽  
...  

Lateropulsion (pusher syndrome) is an important barrier to standing and gait after stroke. Although several studies have attempted to elucidate the relationship between brain lesions and lateropulsion, the effects of specific brain lesions on the development of lateropulsion remain unclear. Thus, the present study investigated the effects of stroke lesion location and size on lateropulsion in right hemisphere stroke patients. The present retrospective cross-sectional observational study assessed 50 right hemisphere stroke patients. Lateropulsion was diagnosed and evaluated using the Scale for Contraversive Pushing (SCP). Voxel-based lesion symptom mapping (VLSM) analysis with 3T-MRI was used to identify the culprit lesion for SCP. We also performed VLSM controlling for lesion volume as a nuisance covariate, in a multivariate model that also controlled for other factors contributing to pusher behavior. VLSM, combined with statistical non-parametric mapping (SnPM), identified the specific region with SCP. Lesion size was associated with lateropulsion. The precentral gyrus, postcentral gyrus, inferior frontal gyrus, insula and subgyral parietal lobe of the right hemisphere seemed to be associated with the lateropulsion; however, after adjusting for lesion volume as a nuisance covariate, no lesion areas were associated with the SCP scores. The size of the right hemisphere lesion was the only factor most strongly associated with lateropulsion in patients with stroke. These results may be useful for planning rehabilitation strategies of restoring vertical posture and understanding the pathophysiology of lateropulsion in stroke patients.


Neurology ◽  
1998 ◽  
Vol 51 (2) ◽  
pp. 458-464 ◽  
Author(s):  
D. Boatman ◽  
J. Hart ◽  
R. P. Lesser ◽  
N. Honeycutt ◽  
N. B. Anderson ◽  
...  

Objective: To investigate the right hemispheric speech perception capabilities of an adult right-handed patient with seizures.Methods: Consecutive, unilateral, intracarotid sodium amobarbital injections and left hemispheric electrical interference mapping were used to determine lateralization and localization of speech perception, measured as syllable discrimination.Results: Syllable discrimination remained intact after left and right intracarotid sodium amobarbital injections. Language otherwise strongly lateralized to the left hemisphere. Despite evidence of bilateral speech perception capabilities, electrical interference testing in the left posterior temporal lobe impaired syllable discrimination.Conclusions: The results suggest a functionally symmetric, parallel system in the adult brain with preferential use of left hemispheric pathways for speech perception.


2020 ◽  
Vol 131 (4) ◽  
pp. e230-e231
Author(s):  
A. Dreßing ◽  
L.A. Beume ◽  
M. Martin ◽  
D.Kümmerer ◽  
H. Urbach ◽  
...  

1995 ◽  
Vol 6 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Janet Metcalfe ◽  
Margaret Funnell ◽  
Michael S. Gazzaniga

Six experiments explored hemispheric memory differences in a patient who had undergone complete corpus callosum resection The right hemisphere was better able than the left to reject new events similar to originally presented materials of several types, including abstract visual forms, faces, and categorized lists of words Although the left hemisphere is capable of mental manipulation, imagination, semantic priming, and complex language production, these functions are apparently linked to memory confusions—confusions less apparent in the more literal right hemisphere Differences between the left and right hemispheres in memory for new schematically consistent or categorically related events may provide a source of information allowing people to distinguish between what they actually witnessed and what they only inferred


2018 ◽  
Vol 39 (01) ◽  
pp. 087-100 ◽  
Author(s):  
Brittany Godin ◽  
Kumiko Oishi ◽  
Kenichi Oishi ◽  
Cameron Davis ◽  
Yessenia Gomez ◽  
...  

AbstractDespite its basic and translational importance, the neural circuitry supporting the perception of emotional faces remains incompletely understood. Functional imaging studies and chronic lesion studies indicate distinct roles of the amygdala and insula in recognition of fear and disgust in facial expressions, whereas intracranial encephalography studies, which are not encumbered by variations in human anatomy, indicate a somewhat different role of these structures. In this article, we leveraged lesion-mapping techniques in individuals with acute right hemisphere stroke to investigate lesions associated with impaired recognition of prototypic emotional faces before significant neural reorganization can occur during recovery from stroke. Right hemisphere stroke patients were significantly less accurate than controls on a test of emotional facial recognition for both positive and negative emotions. Patients with right amygdala or anterior insula lesions had significantly lower scores than other right hemisphere stroke patients on recognition of angry and happy faces. Lesion volume within several regions, including the right amygdala and anterior insula, each independently contributed to the error rate in recognition of individual emotions. Results provide additional support for a necessary role of the right amygdala and anterior insula within a network of regions underlying recognition of facial expressions, particularly those that have biological importance or motivational relevance and have implications for clinical practice.


2008 ◽  
Vol 2 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Renata Mancopes ◽  
Fernanda Schultz

Abstract Great emphasis has been placed on the right hemisphere, due to its possible selective contribution, in the processing of metaphorical statements. Objectives: To describe the processing of metaphors in the case of a patient with transcortical motor aphasia, using specific tests for patients with encephalic injuries of the right hemisphere, and to contribute to the discussion on the inter-hemispheric relationships associated with this function. Methods: A 54 year-old man with transcortical motor aphasia was evaluated three years after a left hemisphere stroke. The tasks of comprehension of metaphors were based on the subtest Metaphor Comprehension Task of the Montreal Evaluation of Communications Scale (MEC). Two metaphor comprehension tests were applied, in 45-minute sessions with a 48 hour interval between each. Test 1 involved comprehension of the metaphors according to the options offered, and Test 2 the comprehension of metaphors measured by response time and visual field. Results: Although the right hemisphere was not affected by the stroke in this case, difficulties were observed in the processing of metaphors. Conclusions: This study suggests that the left hemisphere participates in the processing of figurative meanings. The adaptability of the brain can also re-accommodate the uninjured areas of the brain, causing the dynamic of the brain to be modified. As a result, deducing cerebral functions based on clinical data can be problematic. The value of this study is that it can contribute to clinical aspects of language rehabilitation.


Neurosurgery ◽  
2000 ◽  
Vol 47 (3) ◽  
pp. 562-570 ◽  
Author(s):  
Eric M. Vikingstad ◽  
Yue Cao ◽  
Ajith J. Thomas ◽  
Alex F. Johnson ◽  
Ghaus M. Malik ◽  
...  

ABSTRACT OBJECTIVE In 90% of normal subjects, the left hemisphere is dominant for language function. We investigated whether congenital lesions of the left perisylvian regions altered cortical language representation in right-handed individuals. METHODS Using functional magnetic resonance imaging, we studied language hemispheric dominance in five right-handed adult patients with congenitally acquired arteriovenous malformations (AVMs) originating from left hemispheric cortical language regions. The AVMs had not caused neurological symptoms during early development, but patients presented as adults with migraine, seizure, or minor hemorrhage. Results obtained from the AVM patients were contrasted to those from right-handed brain-injured stroke patients recovering from aphasia and to those from right-handed normal subjects. RESULTS During silent picture naming and verb generation tasks, cortical language networks lateralized primarily to the right hemisphere in the AVM group, compared with the left hemisphere in the normal group. This right hemisphere-shifted language network in the AVM group exceeded the shifts toward right hemispheric dominance found in the stroke group. CONCLUSION Patients with AVMs affecting the left perisylvian regions recruited the right hemisphere into language processing networks during early development, presumably in response to congenitally aberrant circulation. This early right hemisphere recruitment in the AVM patients exceeded the similar process in the brains of stroke patients whose left cortical language networks were damaged in adulthood. Our data provide evidence of effective plasticity in the developing human brain compared with the mature brain response to injury. Knowledge of cortical language representation should assist presurgical planning in patients with developmental anomalies affecting apparently language-dominant brain regions.


2018 ◽  
Vol 30 (3) ◽  
pp. 393-410 ◽  
Author(s):  
Genevieve Quek ◽  
Dan Nemrodov ◽  
Bruno Rossion ◽  
Joan Liu-Shuang

In daily life, efficient perceptual categorization of faces occurs in dynamic and highly complex visual environments. Yet the role of selective attention in guiding face categorization has predominantly been studied under sparse and static viewing conditions, with little focus on disentangling the impact of attentional enhancement and suppression. Here we show that attentional enhancement and suppression exert a differential impact on face categorization supported by the left and right hemispheres. We recorded 128-channel EEG while participants viewed a 6-Hz stream of object images (buildings, animals, objects, etc.) with a face image embedded as every fifth image (i.e., OOOOFOOOOFOOOOF…). We isolated face-selective activity by measuring the response at the face presentation frequency (i.e., 6 Hz/5 = 1.2 Hz) under three conditions: Attend Faces, in which participants monitored the sequence for instances of female faces; Attend Objects, in which they responded to instances of guitars; and Baseline, in which they performed an orthogonal task on the central fixation cross. During the orthogonal task, face-specific activity was predominantly centered over the right occipitotemporal region. Actively attending to faces enhanced face-selective activity much more evidently in the left hemisphere than in the right, whereas attending to objects suppressed the face-selective response in both hemispheres to a comparable extent. In addition, the time courses of attentional enhancement and suppression did not overlap. These results suggest the left and right hemispheres support face-selective processing in distinct ways—where the right hemisphere is mandatorily engaged by faces and the left hemisphere is more flexibly recruited to serve current tasks demands.


Sign in / Sign up

Export Citation Format

Share Document