Influence of Static Atomic Displacements on Composition Quantification of AlGaN/GaN Heterostructures from HAADF-STEM Images

2014 ◽  
Vol 20 (5) ◽  
pp. 1463-1470 ◽  
Author(s):  
Marco Schowalter ◽  
Ingo Stoffers ◽  
Florian F. Krause ◽  
Thorsten Mehrtens ◽  
Knut Müller ◽  
...  

AbstractIn an earlier publication Rosenauer et al. introduced a method for determination of composition in AlGaN/GaN heterostructures from high-angle annular dark field (HAADF) images. Static atomic displacements (SADs) were neglected during simulation of reference data because of the similar covalent radii of Al and Ga. However, SADs have been shown (Grillo et al.) to influence the intensity in HAADF images and therefore could be the reason for an observed slight discrepancy between measured and nominal concentrations. In the present study parameters of the Stillinger–Weber potential were varied in order to fit computed elastic constants, lattice parameters and bonding energies to experimental ones. A reference data set of HAADF images was simulated, in which the new parameterization was used to account for SADs. Two reference samples containing AlGaN layers with different Al concentrations were investigated and Al concentrations in the layers determined based on the new data set. We found that these concentrations were in good agreement with nominal concentrations as well as concentrations determined using alternative techniques such as strain state analysis and energy dispersive X-ray spectroscopy.

Geophysics ◽  
1993 ◽  
Vol 58 (3) ◽  
pp. 408-418 ◽  
Author(s):  
L. R. Jannaud ◽  
P. M. Adler ◽  
C. G. Jacquin

A method developed for the determination of the characteristic lengths of an heterogeneous medium from the spectral analysis of codas is based on an extension of Aki’s theory to anisotropic elastic media. An equivalent Gaussian model is obtained and seems to be in good agreement with the two experimental data sets that illustrate the method. The first set was obtained in a laboratory experiment with an isotropic marble sample. This sample is characterized by a submillimetric length scale that can be directly observed on a thin section. The spectral analysis of codas and their inversion yields an equivalent correlation length that is in good agreement with the observed one. The second data set is obtained in a crosshole experiment at the usual scale of a seismic survey. The codas are recorded, analysed, and inverted. The analysis yields a vertical characteristic length for the studied subsurface that compares well with the characteristic length measured by seismic and stratigraphic logs.


2004 ◽  
Vol 36 (3) ◽  
pp. 1457 ◽  
Author(s):  
A. A. Panou ◽  
C. B. Papazachos ◽  
Ch. Papaioannou ◽  
P. M. Hatzidimitriou

Strong motion recordings of the May 13, 1995 Mw=6.6, earthquake sequence that occurred in the Kozani-Grevena region (Western Macedonia, Greece) have been analyzed for the determination of their source parameters. The data set for this study comes from a temporarily deployed accelerograph network and the source parameters using the shear-wave displacement spectra have been estimated. For this estimation the spectral records have been corrected for the site effects and for the propagation path (geometrical spreading and anelastic attenuation). The magnitude of each event was also re-calculated by estimating appropriate station corrections. The derived relationships arelogMo =(1.43 ±0.09) M, + (16.92 ± 0.29), 2.0 < ML< 5.0 (1)logfc = (-0.56± 0.08) · ML + (2.52 + 0.29), 2.0 < ML< 5.0 (2)logM0 = (-2.20 + 0.08) · log fc + (23.16 ± 0.84), 0.6 < fc < 10.0 (3)The near-surface attenuation parameter κ0 has also been determined for the strong motion stations sites. These values of κ0 are in good agreement with those of Margaris and Boore (1998) for the geological formation on which each station was positioned. The obtained source parameters are in good agreement with those from previous studies for the Aegean region.


2008 ◽  
Vol 8 (2) ◽  
pp. 5477-5536 ◽  
Author(s):  
O. Schneising ◽  
M. Buchwitz ◽  
J. P. Burrows ◽  
H. Bovensmann ◽  
M. Reuter ◽  
...  

Abstract. Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003–2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 minute per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set. The XCH4 data set is discussed in a separate paper (Part 2). In order to assess the quality of the retrieved XCO2 we present comparisons with Fourier Transform Spectroscopy (FTS) XCO2 measurements at two northern hemispheric mid-latitude ground stations. To assess the quality globally, we present detailed comparisons with global XCO2 fields obtained from NOAA's CO2 assimilation system CarbonTracker. For the Northern Hemisphere we find good agreement with the reference data for the CO2 seasonal cycle and the CO2 annual increase. For the Southern Hemisphere, where significantly less data are available for averaging compared to the Northern Hemisphere, the CO2 annual increase is also in good agreement with CarbonTracker but the amplitude and phase of the seasonal cycle show systematic differences up to a few ppm arising partially from the O2 normalization. The retrieved XCO2 regional pattern at monthly resolution over various regions show clear corrrelations with CarbonTracker but also significant differences. Typically the retrieved variability is about 4 ppm (1% of 380 ppm) higher but depending on time and location differences can reach or even exceed 8 ppm. Based on the error analysis and on the comparison with the reference data we conclude that the XCO2 data set can be characterized by a single measurement retrieval precision (random error) of 1–2%, a systematic low bias of about 1.5%, and by a relative accuracy of about 1–2% for monthly averages at a spatial resolution of about 7°×7°. When averaging the SCIAMACHY XCO2 over all three years we find reasonable correlation with EDGAR anthropogenic CO2 emissions for Germany, The Netherlands and Belgium indicating that regionally elevated CO2 arising from regional anthropogenic CO2 emissions can be detected from space.


2010 ◽  
Vol 16 (5) ◽  
pp. 599-603 ◽  
Author(s):  
John Notte IV ◽  
Raymond Hill ◽  
Sean M. McVey ◽  
Ranjan Ramachandra ◽  
Brendan Griffin ◽  
...  

AbstractThe scanning helium ion microscope has been used in transmission mode to investigate both the feasibility of this approach and the utility of the signal content and the image information available. Operating at 40 keV the penetration of the ion beam, and the imaging resolution achieved, in MgO crystals was found to be in good agreement with values predicted by Monte Carlo modeling. The bright-field and annular dark-field signals displayed the anticipated contrasts associated with beam absorption and scattering. In addition, the diffraction of the He ion beam within the sample gave rise to crystallographic contrast effects in the form of thickness fringes and dislocation images. Scanning transmission He ion microscopy thus achieves useful sample penetration and provides nanometer scale resolution, high contrast images of crystalline materials and crystal defects even at modest beam energies.


2013 ◽  
Vol 1512 ◽  
Author(s):  
Laura Lazzarini ◽  
Enzo Rotunno ◽  
Vincenzo Grillo ◽  
Massimo Longo

ABSTRACTThe reduction of the active cell size to the nanoscale is crucial for the improvement of the phase change memory devices (PCM) based on Ge-Sb-Te (GST) alloys. The self-assembly of Au catalyzed Ge1Sb2Te4 (GST-124) nanowires (NWs) has been achieved by metal organic chemical vapor deposition. The atomic arrangement of the NWs has been investigated and the stacking sequence has been identified, by combining the direct observation by High Angle Annular Dark Field (HAADF) imaging and simulations. It has been assessed that Ge and Sb atoms can randomly occupy the same sites in the crystal lattice, despite the adverse predictions of the theoretical models elaborated for the bulk material.


2008 ◽  
Vol 8 (14) ◽  
pp. 3827-3853 ◽  
Author(s):  
O. Schneising ◽  
M. Buchwitz ◽  
J. P. Burrows ◽  
H. Bovensmann ◽  
M. Reuter ◽  
...  

Abstract. Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003–2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set. The XCH4 data set is discussed in a separate paper (Part 2). In order to assess the quality of the retrieved XCO2 we present comparisons with Fourier Transform Spectroscopy (FTS) XCO2 measurements at two northern hemispheric mid-latitude ground stations. To assess the quality globally, we present detailed comparisons with global XCO2 fields obtained from NOAA's CO2 assimilation system CarbonTracker. For the Northern Hemisphere we find good agreement with the reference data for the CO2 seasonal cycle and the CO2 annual increase. For the Southern Hemisphere, where significantly less data are available for averaging compared to the Northern Hemisphere, the CO2 annual increase is also in good agreement with CarbonTracker but the amplitude and phase of the seasonal cycle show systematic differences (up to several ppm) arising partially from the O2 normalization most likely caused by unconsidered scattering effects due to subvisual cirrus clouds. The retrieved XCO2 regional pattern at monthly resolution over various regions show clear correlations with CarbonTracker but also significant differences. Typically the retrieved variability is about 4 ppm (1% of 380 ppm) higher but depending on time and location differences can reach or even exceed 8 ppm. Based on the error analysis and on the comparison with the reference data we conclude that the XCO2 data set can be characterized by a single measurement retrieval precision (random error) of 1–2%, a systematic low bias of about 1.5%, and by a relative accuracy of about 1–2% for monthly averages at a spatial resolution of about 7°×7°. When averaging the SCIAMACHY XCO2 over all three years we find elevated CO2 over the highly populated region of western central Germany and parts of the Netherlands ("Rhine-Main area") reasonably well correlated with EDGAR anthropogenic CO2 emissions. On average the regional enhancement is 2.7 ppm including an estimated contribution of 1–1.5 ppm due to aerosol related errors and sampling.


2008 ◽  
Vol 162 (1) ◽  
pp. 14-28 ◽  
Author(s):  
A.A. Sousa ◽  
M. Hohmann-Marriott ◽  
M.A. Aronova ◽  
G. Zhang ◽  
R.D. Leapman

2022 ◽  
Vol 10 (1) ◽  
pp. 93
Author(s):  
Yuhua Gao ◽  
Xiaoyuan Wang ◽  
Xianwen Fang ◽  
Xuebo Yin ◽  
Lu Chen ◽  
...  

Fluorine and chlorine are important tracers for geochemical and environmental studies. In this study, a rapid alkaline digestion (NaOH) method for the simultaneous determination of fluorine and chlorine in marine and stream sediment reference samples using ion chromatography is developed. The proposed method suppresses the volatilization loss of fluorine and chlorine and decreases the matrix effects. The results are in good agreement with fluorine ~100%, chlorine ranging from 90 to 95% of the expected concentrations. The detection limits of this method were 0.05 μg/g for fluorine and 0.10 μg/g for chlorine. This method is simple, economical, precise and accurate, which shows great potential for the rapid simultaneous determination of fluorine and chlorine in large batches of geological and environmental samples commonly analyzed for environmental geochemistry studies.


Sign in / Sign up

Export Citation Format

Share Document