EB1 Is Essential for Spindle Formation and Chromosome Alignment During Oocyte Meiotic Maturation in Mice

2021 ◽  
pp. 1-7
Author(s):  
Dongjie Zhou ◽  
Zheng-Wen Nie ◽  
Xiang-Shun Cui

The cytoskeleton plays an orchestrating role in polarized cell growth. Microtubules (MTs) not only play critical roles in chromosome alignment and segregation but also control cell shape, division, and motility. A member of the plus-end tracking proteins, end-binding protein 1 (EB1), regulates MT dynamics and plays vital roles in maintaining spindle symmetry and chromosome alignment during mitosis. However, the role of EB1 in mouse oocyte meiosis remains unknown. Here, we examined the localization patterns and expression levels of EB1 at different stages. EB1 protein level was found to be stable during meiosis. EB1 mainly localized along the spindle and had a similar localization pattern as that of α-tubulin. The EB1 protein was degraded with a Trim-Away method, and the results were further confirmed with western blotting and immunofluorescence. At 12 h of culture after EB1 knockdown (KD), a reduced number of mature MII oocytes were observed. EB1 KD led to spindle disorganization, chromosome misalignment, and missegregation; β-catenin protein binds to actin via the adherens junctional complex, which was significantly reduced in the EB1 KD oocytes. Collectively, we propose that the impairment of EB1 function manipulates spindle formation, thereby promoting chromosomal loss, which is expected to fuel aneuploidy and possibly fertilization failure.

2013 ◽  
Vol 25 (3) ◽  
pp. 495 ◽  
Author(s):  
Ya-Peng Wang ◽  
Shu-Tao Qi ◽  
Yanchang Wei ◽  
Zhao-Jia Ge ◽  
Lei Chen ◽  
...  

UCHL5IP is one of the subunits of the haus complex, which is important for microtubule generation, spindle bipolarity and accurate chromosome segregation in Drosophila and human mitotic cells. In this study, the expression and localisation of UCHL5IP were explored, as well as its functions in mouse oocyte meiotic maturation. The results showed that the UCHL5IP protein level was consistent during oocyte maturation and it was localised to the meiotic spindle in MI and MII stages. Knockdown of UCHL5IP led to spindle defects, chromosome misalignment and disruption of γ-tubulin localisation in the spindle poles. These results suggest that UCHL5IP plays critical roles in spindle formation during mouse oocyte meiotic maturation.


Chemosphere ◽  
2020 ◽  
Vol 249 ◽  
pp. 126182 ◽  
Author(s):  
Zhi-Ming Ding ◽  
Li-Ping Hua ◽  
Muhammad Jamil Ahmad ◽  
Muhammad Safdar ◽  
Fan Chen ◽  
...  

Reproduction ◽  
2016 ◽  
Vol 152 (5) ◽  
pp. R143-R157 ◽  
Author(s):  
R B Gilchrist ◽  
A M Luciano ◽  
D Richani ◽  
H T Zeng ◽  
X Wang ◽  
...  

The cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology have been at the forefront of oocyte research for decades, and many of the long-standing controversies in relation to the regulation of oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of natriuretic peptides and cGMP – inhibiting the hydrolysis of intra-oocyte cAMP – and that the pre-ovulatory gonadotrophin surge reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle. Research over the past two decades has conclusively demonstrated that this surge in cAMP is important for the subsequent developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practised clinically do not recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared with clinical IVF. This review particularly focuses on this latter aspect – the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and fertility treatment options.


2008 ◽  
Vol 88 (3) ◽  
pp. 343-349 ◽  
Author(s):  
S. Bilodeau-Goeseels

Meiotic maturation in mammalian oocytes is initiated during fetal development, arrested for several years in some cases, then completed at the time of ovulation. Although the mechanisms involved in oocyte meiotic arrest and meiotic resumption are not fully understood, new players and roles have recently been identified. This paper reviews the role of follicle cells, as well as the role of the cyclic adenosine 3', 5'-monophosphate (cAMP) pathway, in the maintenance of meiotic arrest. Potential mechanisms by which luteinizing hormone (LH) signals meiotic resumption are also reviewed. New findings on the role of adenosine monophosphate-activated kinase (PRKA), as well as the effects of culture medium composition on meiosis in vitro, are also discussed. From a practical perspective, improved understanding of the mechanisms involved in the control of meiosis will facilitate better control of the process in vitro resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures. Key words: Bovine, oocyte, meiosis, cAMP


Author(s):  
Hao Qin ◽  
Yi Qu ◽  
Yi-Feng Yuan ◽  
Yang-Yang Li ◽  
Jie Qiao

RBM14 is an RNA-binding protein that regulates spindle integrity in mitosis; however, its functions during meiosis are still unclear. In this study, we discovered that RBM14 expression was down-regulated in oocytes from old mice. The RBM14 distribution at different stages of meiosis was explored, while it presents overlapped localization patterns with α-tubulin in MI- and MII-stage oocytes. Treatment of MI-stage oocytes with spindle-perturbing agents revealed that RBM14 was co-localized with microtubules. RBM14 knockdown with RBM14-specific morpholino showed that RBM14-depleted oocytes underwent symmetric division compared to the controls. RBM14 knockdown also resulted in spindle defects and chromosome abnormalities during oocyte maturation, presumably due to α-tubulin hyperacetylation. Co-immunoprecipitation analysis demonstrated that RBM14 is interacted with endogenous α-tubulin in mammalian cells. These findings indicate that RBM14 is an essential modulator of oocyte meiotic maturation by regulating α-tubulin acetylation to affect spindle morphology and chromosome alignment. Consequently, RBM14 represents a potential biomarker of oocyte quality and a novel therapeutic target in women with oocyte maturation failure.


Sign in / Sign up

Export Citation Format

Share Document