scholarly journals Algorithms for representation theory of real reductive groups

2009 ◽  
Vol 8 (2) ◽  
pp. 209-259 ◽  
Author(s):  
Jeffrey Adams ◽  
Fokko du Cloux

AbstractThe admissible representations of a real reductive groupGare known by work of Langlands, Knapp, Zuckerman and Vogan. This paper describes an effective algorithm for computing the irreducible representations ofGwith regular integral infinitesimal character. The algorithm also describes structure theory ofG, including the orbits ofK(ℂ) (a complexified maximal compact subgroup) on the flag variety. This algorithm has been implemented on a computer by the second author, as part of the ‘Atlas of Lie Groups and Representations’ project.

2008 ◽  
Vol 144 (1) ◽  
pp. 163-185 ◽  
Author(s):  
Peter Heinzner ◽  
Gerald W. Schwarz ◽  
Henrik Stötzel

AbstractWe study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of G extends holomorphically to an action of the complexified group $G^{\mathbb {C}}$ and that with respect to a compatible maximal compact subgroup U of $G^{\mathbb {C}}$ the action on Z is Hamiltonian. There is a corresponding gradient map $\mu _{\mathfrak {p}}\colon X\to \mathfrak {p}^*$ where $\mathfrak {g}=\mathfrak {k}\oplus \mathfrak {p}$ is a Cartan decomposition of $\mathfrak {g}$. We obtain a Morse-like function $\eta _{\mathfrak {p}}:=\Vert \mu _{\mathfrak {p}}\Vert ^2$ on X. Associated with critical points of $\eta _{\mathfrak {p}}$ are various sets of semistable points which we study in great detail. In particular, we have G-stable submanifolds Sβ of X which are called pre-strata. In cases where $\mu _{\mathfrak {p}}$ is proper, the pre-strata form a decomposition of X and in cases where X is compact they are the strata of a Morse-type stratification of X. Our results are generalizations of results of Kirwan obtained in the case where $G=U^{\mathbb {C}}$ and X=Z is compact.


2010 ◽  
Vol 147 (1) ◽  
pp. 263-283 ◽  
Author(s):  
Florian Herzig

AbstractSuppose that G is a connected reductive group over a p-adic field F, that K is a hyperspecial maximal compact subgroup of G(F), and that V is an irreducible representation of K over the algebraic closure of the residue field of F. We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported,K-biequivariant functions f:G(F)→End   V. These Hecke algebras were first considered by Barthel and Livné for GL 2. They play a role in the recent mod p andp-adic Langlands correspondences for GL 2 (ℚp) , in generalisations of Serre’s conjecture on the modularity of mod p Galois representations, and in the classification of irreducible mod p representations of unramified p-adic reductive groups.


Author(s):  
Randall R. Holmes ◽  
Tin-Yau Tam

AbstractFor a real vector space V acted on by a group K and fixed x and y in V, we consider the problem of finding the minimum (respectively, maximum) distance, relative to a K-invariant convex function on V, between x and elements of the convex hull of the K-orbit of y. We solve this problem in the case where V is a Euclidean space and K is a finite reflection group acting on V. Then we use this result to obtain an analogous result in the case where K is a maximal compact subgroup of a reductive group G with adjoint action on the vector component ρ of a Cartan decomposition of Lie G. Our results generalize results of Li and Tsing and of Cheng concerning distances to the convex hulls of matrix orbits.


1987 ◽  
Vol 106 ◽  
pp. 121-142 ◽  
Author(s):  
Yuval Z. Flicker

Let E/F be an unramified cyclic extension of local non-archimedean fields, G a connected reductive group over F, K(F) (resp. K(E)) a hyper-special maximal compact subgroup of G(F) (resp. G(E)), and H(F) (resp. H(E)) the Hecke convolution algebra of compactly-supported complex-valued K(F) (resp. G(E))-biinvariant functions on G(F) (resp. G(E)). Then the theory of the Satake transform defines (see § 2) a natural homomorphism H(E) → H(F), θ→f. There is a norm map N from the set of stable twisted conjugacy classes in G(E) to the set of stable conjugacy classes in G(F); it is an injection (see [Ko]). Let Ω‱(x, f) denote the stable orbital integral of f in H(F) at the class x, and Ω‱(y, θ) the stable twisted orbital integral of θ in H(E) at the class y.


2011 ◽  
Vol 147 (5) ◽  
pp. 1581-1607 ◽  
Author(s):  
Heiko Gimperlein ◽  
Bernhard Krötz ◽  
Henrik Schlichtkrull

AbstractIn this article a general framework for studying analytic representations of a real Lie group G is introduced. Fundamental topological properties of the representations are analyzed. A notion of temperedness for analytic representations is introduced, which indicates the existence of an action of a certain natural algebra 𝒜(G) of analytic functions of rapid decay. For reductive groups every Harish-Chandra module V is shown to admit a unique tempered analytic globalization, which is generated by V and 𝒜(G) and which embeds as the space of analytic vectors in all Banach globalizations of V.


Author(s):  
Nicholas M. Katz

This chapter analyzes Frobenius conjugacy classes. It shows that in either the split or nonsplit case, when χ‎ is good for N, the conjugacy class FrobE,X has unitary eigenvalues in every representation of the reductive group Garith,N. Now fix a maximal compact subgroup K of the complex reductive group Garith,N (ℂ). The semisimple part (in the sense of Jordan decomposition) of FrobE,X gives rise to a well-defined conjugacy class θE,X in K.


2014 ◽  
Vol 66 (6) ◽  
pp. 1201-1224 ◽  
Author(s):  
Jeffrey D. Adler ◽  
Joshua M. Lansky

AbstractSuppose that is a connected reductive group defined over a field k, and ┌ is a finite group acting via k-automorphisms of satisfying a certain quasi-semisimplicity condition. Then the identity component of the group of -fixed points in is reductive. We axiomatize the main features of the relationship between this fixed-point group and the pair (,┌) and consider any group G satisfying the axioms. If both and G are k-quasisplit, then we can consider their duals *and G*. We show the existence of and give an explicit formula for a natural map from the set of semisimple stable conjugacy classes in G*(k) to the analogous set for *(k). If k is finite, then our groups are automatically quasisplit, and our result specializes to give a map of semisimple conjugacy classes. Since such classes parametrize packets of irreducible representations of G(k) and (k), one obtains a mapping of such packets.


1989 ◽  
Vol 41 (3) ◽  
pp. 385-438 ◽  
Author(s):  
W. Casselman

Let G be the group of R-rational points on a reductive, Zariskiconnected, algebraic group defined over R, let K be a maximal compact subgroup, and let g be the corresponding complexified Lie algebra of G. It is a curious fault of the current representation theory of G that for technical reasons one very rarely works with representations of G itself, but rather with a certain category of simultaneous representations of g and K. The reasons for this are, roughly speaking, that for a given (g,K)-module of finite length there are clearly any number of overlying rather distinct continuous G-representations, whose ‘essence’ is captured by the (g, K)-module alone. At any rate, this paper will propose a remedy for this inconvenience, and define a category of smooth representations of G of finite length which will, I hope, turn out to be as easy to work with as representations of (g, K) and occasionally much more convenient. It is to be considered a report on what has been to a great extent joint work with Nolan Wallach, and is essentially a sequel to [38].


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 190
Author(s):  
Karl H. Hofmann ◽  
Sidney A. Morris

This article surveys the development of the theory of compact groups and pro-Lie groups, contextualizing the major achievements over 125 years and focusing on some progress in the last quarter century. It begins with developments in the 18th and 19th centuries. Next is from Hilbert’s Fifth Problem in 1900 to its solution in 1952 by Montgomery, Zippin, and Gleason and Yamabe’s important structure theorem on almost connected locally compact groups. This half century included profound contributions by Weyl and Peter, Haar, Pontryagin, van Kampen, Weil, and Iwasawa. The focus in the last quarter century has been structure theory, largely resulting from extending Lie Theory to compact groups and then to pro-Lie groups, which are projective limits of finite-dimensional Lie groups. The category of pro-Lie groups is the smallest complete category containing Lie groups and includes all compact groups, locally compact abelian groups, and connected locally compact groups. Amongst the structure theorems is that each almost connected pro-Lie group G is homeomorphic to RI×C for a suitable set I and some compact subgroup C. Finally, there is a perfect generalization to compact groups G of the age-old natural duality of the group algebra R[G] of a finite group G to its representation algebra R(G,R), via the natural duality of the topological vector space RI to the vector space R(I), for any set I, thus opening a new approach to the Hochschild-Tannaka duality of compact groups.


Sign in / Sign up

Export Citation Format

Share Document