Molecular characterization of oil palmElaeis guineensisJacq. of different origins for their utilization in breeding programmes

2014 ◽  
Vol 12 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Diana Arias ◽  
Iván Ochoa ◽  
Fernando Castro ◽  
Hernán Romero

Sustainable development of a breeding programme depends on having sufficient genetic variability to achieve genetic gains in each selection cycle. The aim of this study was to molecularly characterize families of the oil palm,Elaeis guineensisJacq., of different origins using microsatellite molecular markers. The value of the observed heterozygosity was higher than that of the expected heterozygosity in all of the progenies. The coefficients (GST= 0.207 andFST= 0.174) and AMOVA showed genotypic differences among the evaluated families. Likewise, this was reflected in the groups obtained by the dendrogram and principal coordinate analyses. This difference could have evolved due to the enrichment of some of the families with germplasm from different origins. Therefore, genetic relationships estimated from molecular data would be convenient to select families more distant from each group and palms more distant from each family selected to reserve genetic variability. This information will guide us in the decision-making process when planning breeding programmes focused on crosses to develop new populations with an acceptable broad genetic base and adaptability. In this way, sources of resistance to biotic and abiotic factors can be identified for the development of new varieties with competitive advantages for the sector.

2017 ◽  
Vol 45 (2) ◽  
pp. 212
Author(s):  
Mondjeli Constantin ◽  
Sobir Ridwani ◽  
Muhamad Syukur ◽  
And Willy Bayuardi Suwarno

Knowledge of the magnitude of genetic variability, heritability and genetic advance in the selection of desirable characters could assist the plant breeders in ascertaining criteria to be used in the breeding programmes. Twenty three introgressed oil palm progenies were evaluated at the Specialized Centre for Oil Palm Research of Cameroon, from 2004 to 2014 to estimate performance, genetic variability, heritability and genetic advance of oil yield and some economic traits in terms to select new oil palm parent materials with the traits of interest. The results revealed high variability among oil palm population for all the characters. Moderate estimates of the phenotypic and genotypic coefficient of variations associated with high heritability and moderate genetic advance as percent of mean were obtained for characters of fresh fruit bunch, bunch number, oil yield, kernel to bunch, kernel to fruit, kernel yield and height increment. The results suggest the effectiveness of selection method for these traits and their improvement through their phenotypic performance. LM11087T x LM2749D and LM12960T x LM7409D were obtained as superior oil palm crossing parents with the potential production of 6.26 ton ha-1yr-1 of crude palm oil; they can be exploited in seed production and further breeding program.<br /><br />Keywords: genetic advance, heritability, introgressed progenies, oil yield, Phenotypic<br /><br />


2010 ◽  
Vol 10 (4) ◽  
pp. 364-369 ◽  
Author(s):  
Carlos Antonio Fernandes Santos ◽  
Marcos Antonio Drumond ◽  
Marciene Amorim Rodrigues ◽  
Marcio Rannieri Viana Evangelista

The genetic relationships between accessions of Jatropha (Jatropha curcas) were determined based on AFLP marker. A set of 50 plants from 12 accessions of J. curcas was analyzed with molecular data from 164 loci generated from 17 AFLP primer combinations. Molecular variance of data was analyzed by total decomposition between and within accessions. An UPGMA dendrogram was constructed based on genetic distances estimated by Jaccard's similarity coefficient. The well-defined dendrogram showed a cophenetic value of 0.91. Groups of plants were observed in six of the 12 accessions studied with similarity of over 30 %, indicating high genetic variability. The variation among accessions was estimated to be 0.275, also indicating high variability. These results show that the genetic variability of the studied J. curcas accessions is structured according to the origin and that a greater number of populations should be sampled to increase the genetic diversity of the studied genebank.


2020 ◽  
Vol 3 (2) ◽  
pp. 150-159
Author(s):  
Geleta Gerema

The present investigation was undertaken to study the genetic variability, heritability and correlation coefficient analysis for 7 metric traits in 12 durum wheat genotypes at western Oromia during 2015-2018. Significant genotypic differences were observed for the majority traits studied, indicates considerable amount of variation among genotypes for each character. The estimates of genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) were high for kernels per spikelet, thousand kernels weight, and number of kernels per spike and grain yield. The remaining traits were ranged from low to moderate estimates. High heritability estimates were recorded for the majority traits studied.  The estimated broad – sense heritability (h2) has ranged from 31.6% for maturity to 80.8% for grain yield. High genetic advance combined with high heritability was recorded for plant height, thousand kernel weight, kernels per spike and grain yield, indicates that most likely selection based on phenotype of genotypes could be effective to improve these characters. Grain yield was positively and significantly correlated with spike length, kernels per spike and thousand kernels weight both at genotypic and phenotypic levels. The strong correlation of grain yield with the mentioned traits showed that grain yield could be indirectly improved through improving these traits. This information might be used in the genetics and breeding programmes for improvement of durum wheat.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
R.A. PATIL ◽  
S.G. BHARAD ◽  
S.N. SAWANT

Assessment of genetic diversity in the available germplasm is the prerequisite for development of improved genotypes through planned breeding programmes. In the view of this Forty-eight genotypes of seedling origin guava along with 1 check (L-49/Sardar) collected and conserved at germplasm block, Main Garden, Department of Horticulture, Dr. P. D. A. University, Akola were evaluated for genetic variability and diversity based on the qualitative characteristics. The genotypes were evaluated for sixteen morphological traitsviz. tree, leaf, floral and fruit traits. Results Show considerable extent of variability amongst the 49 genotypes in each traits. A sizeable amount of intrapopulation diversity recorded can be used to identify diverse parents which can be utilized in hybridization programmes.


Author(s):  
Amber Bassett ◽  
Kelvin Kamfwa ◽  
Daniel Ambachew ◽  
Karen Cichy

Abstract Key message Cooked bean flavor and texture vary within and across 20 Andean seed types; SNPs are significantly associated with total flavor, beany, earthy, starchy, bitter, seed-coat perception, and cotyledon texture. Abstract Common dry beans are a nutritious food recognized as a staple globally, but their consumption is low in the USA. Improving bean flavor and texture through breeding has the potential to improve consumer acceptance and suitability for new end-use products. Little is known about genetic variability and inheritance of bean sensory characteristics. A total of 430 genotypes of the Andean Diversity Panel representing twenty seed types were grown in three locations, and cooked seeds were evaluated by a trained sensory panel for flavor and texture attribute intensities, including total flavor, beany, vegetative, earthy, starchy, sweet, bitter, seed-coat perception, and cotyledon texture. Extensive variation in sensory attributes was found across and within seed types. A set of genotypes was identified that exhibit extreme attribute intensities generally stable across all three environments. seed-coat perception and total flavor intensity had the highest broad-sense heritability (0.39 and 0.38, respectively), while earthy and vegetative intensities exhibited the lowest (0.14 and 0.15, respectively). Starchy and sweet flavors were positively correlated and highest in white bean genotypes according to principal component analysis. SNPs associated with total flavor intensity (six SNPs across three chromosomes), beany (five SNPs across four chromosomes), earthy (three SNPs across two chromosomes), starchy (one SNP), bitter (one SNP), seed-coat perception (three SNPs across two chromosomes), and cotyledon texture (two SNPs across two chromosomes) were detected. These findings lay a foundation for incorporating flavor and texture in breeding programs for the development of new varieties that entice growers, consumers, and product developers alike.


Author(s):  
Laura Barral-Fraga ◽  
María Teresa Barral ◽  
Keeley L. MacNeill ◽  
Diego Martiñá-Prieto ◽  
Soizic Morin ◽  
...  

This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.


2009 ◽  
Vol 69 (2) ◽  
pp. 375-380 ◽  
Author(s):  
MF. Manica-Cattani ◽  
J. Zacaria ◽  
G. Pauletti ◽  
L. Atti-Serafini ◽  
S. Echeverrigaray

Twenty-seven accessions of Lippia alba Mill. collected in Rio Grande do Sul state, Brazil, were analysed by ISSR and RAPD markers to evaluate their genetic variability and relationships. Six ISSR primers and four RAPD primers generated 120 amplified fragments, most of which were polymorphics. The overall genetic variability among accessions was very high when compared with other plant species. The hierarchical analysis of molecular data (UPGMA) showed low relationship between accessions, and no grouping between accessions of the same chemotype. Canonical functions allowed identifying some variables related with the chemical characteristics of the essential oils. Both ISSR and RAPD markers were efficient to address the genetic diversity of L. alba, and may contribute to the conservation and breeding of this increasingly important aromatic and medicinal species.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 231
Author(s):  
Ines Brinke ◽  
Christine Große-Brinkhaus ◽  
Katharina Roth ◽  
Maren Julia Pröll-Cornelissen ◽  
Sebastian Klein ◽  
...  

The surgical castration of young male piglets without anesthesia is no longer allowed in Germany from 2021. One alternative is breeding against boar taint, but shared synthesis pathways of androstenone (AND) and several endocrine fertility parameters (EFP) indicate a risk of decreasing fertility. The objective of this study was to investigate the genetic background between AND, skatole (SKA), and six EFP in purebred Landrace (LR) and Large White (LW) populations. The animals were clustered according to their genetic relatedness because of their different origins. Estimated heritabilities (h2) of AND and SKA ranged between 0.52 and 0.34 in LR and LW. For EFP, h2 differed between the breeds except for follicle-stimulating hormone (FSH) (h2: 0.28–0.37). Both of the breeds showed unfavorable relationships between AND and testosterone, 17-β estradiol, and FSH. The genetic relationships (rg) between SKA and EFP differed between the breeds. A genome-wide association analysis revealed 48 significant associations and confirmed a region for SKA on Sus Scrofa chromosome (SSC) 14. For EFP, the results differed between the clusters. In conclusion, rg partly confirmed physiologically expected antagonisms between AND and EFP. Particular attention should be spent on fertility traits that are based on EFP when breeding against boar taint to balance the genetic progress in both of the trait complexes.


2012 ◽  
Vol 10 (3) ◽  
pp. 258-260 ◽  
Author(s):  
Mohar Singh ◽  
Z. Khan ◽  
Krishna Kumar ◽  
M. Dutta ◽  
Anju Pathania ◽  
...  

Fusarium wilt caused by Fusarium oxysporum, Schlecht. emend. Snyd. & Hans. f. sp. ciceri is prevalent in most chickpea-growing countries and is a major devastating disease. Host plant resistance is the most practical method of disease management. Indigenous chickpea germplasm reveals a heterogeneous genetic make-up and the response of resistance to wilt is an unexplored potential source for disease resistance. There are 70 indigenous germplasm lines selected on the basis of their agronomic performance and diverse areas of collections in the country. Of these, four accessions had a highly resistant score of 1 and six had a score of 3 using a 1–9 rating scale, indicating their level of resistance to Fusarium wilt (race 4). Other germplasm accessions of chickpea were found to be moderately resistant to highly susceptible disease reaction. Likewise, the same set of germplasm was also screened for Meloidogyne incognita (race 1) using pot culture under controlled condition. Only one accession was found to be resistant to this pest. These resistant gene sources can be utilised effectively for race-specific chickpea wilt and root-knot resistance breeding programmes.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mercia Rasoanoro ◽  
Steven M. Goodman ◽  
Milijaona Randrianarivelojosia ◽  
Mbola Rakotondratsimba ◽  
Koussay Dellagi ◽  
...  

Abstract Background Numerous studies have been undertaken to advance knowledge of apicomplexan parasites infecting vertebrates, including humans. Of these parasites, the genus Plasmodium has been most extensively studied because of the socio-economic and public health impacts of malaria. In non-human vertebrates, studies on malaria or malaria-like parasite groups have been conducted but information is far from complete. In Madagascar, recent studies on bat blood parasites indicate that three chiropteran families (Miniopteridae, Rhinonycteridae, and Vespertilionidae) are infected by the genus Polychromophilus with pronounced host specificity: Miniopterus spp. (Miniopteridae) harbour Polychromophilus melanipherus and Myotis goudoti (Vespertilionidae) is infected by Polychromophilus murinus. However, most of the individuals analysed in previous studies were sampled on the western and central portions of the island. The aims of this study are (1) to add new information on bat blood parasites in eastern Madagascar, and (2) to highlight biotic and abiotic variables driving prevalence across the island. Methods Fieldworks were undertaken from 2014 to 2016 in four sites in the eastern portion of Madagascar to capture bats and collect biological samples. Morphological and molecular techniques were used to identify the presence of haemosporidian parasites. Further, a MaxEnt modelling was undertaken using data from Polychromophilus melanipherus to identify variables influencing the presence of this parasite Results In total, 222 individual bats belonging to 17 species and seven families were analysed. Polychromophilus infections were identified in two families: Miniopteridae and Vespertilionidae. Molecular data showed that Polychromophilus spp. parasitizing Malagasy bats form a monophyletic group composed of three distinct clades displaying marked host specificity. In addition to P. melanipherus and P. murinus, hosted by Miniopterus spp. and Myotis goudoti, respectively, a novel Polychromophilus lineage was identified from a single individual of Scotophilus robustus. Based on the present study and the literature, different biotic and abiotic factors are shown to influence Polychromophilus infection in bats, which are correlated based on MaxEnt modelling. Conclusions The present study improves current knowledge on Polychromophilus blood parasites infecting Malagasy bats and confirms the existence of a novel Polychromophilus lineage in Scotophilus bats. Additional studies are needed to obtain additional material of this novel lineage to resolve its taxonomic relationship with known members of the genus. Further, the transmission mode of Polychromophilus in bats as well as its potential effect on bat populations should be investigated to complement the results provided by MaxEnt modelling and eventually provide a comprehensive picture of the biology of host-parasite interactions.


Sign in / Sign up

Export Citation Format

Share Document