scholarly journals Rotational properties of the Orion nebular cluster revised

2006 ◽  
Vol 2 (S239) ◽  
pp. 311-313
Author(s):  
Natália R. Landin ◽  
Paolo Ventura ◽  
Francesca D'Antona ◽  
Luiz T. S. Mendes ◽  
Luiz P. R. Vaz

AbstractThe observational data of the Orion Nebula Cluster (ONC) is reanalyzed by means of new sets of pre-main sequence (PMS) evolutionary tracks including rotation, non-gray boundary conditions (BC's) and either low (LCE) or high convection efficiency (HCE), aiming better understanding of the appropriate physical constraints for the rotational evolution of the stars within the ONC. The role played by convection is a key aspect of our analysis, since there are conflicting results from theory and observations. We derived stellar masses and ages for the ONC by using both LCE and HCE and considered was the role of non-gray atmospheres. Our results show that the resulting mass distribution for the bulk of the ONC population is in the range 0.2-0.4M⊙ for our non-gray models, and in the range 0.1-0.3M⊙ for gray models. In agreement with previous works, we found that a large percentage (∼70%) of low-mass stars (M≤Mtr, where Mtr is a transition mass) in the ONC appears to be fast rotators (P<4days). Mtr depends on the model choosen, being Mtr=0.5 for LCE, Mtr=0.35 for HCE and, as found in previous works, Mtr=0.25 for gray models. Finally, our analysis indicates that a second parameter is needed for a proper description of convection in the PMS phase.

2007 ◽  
Vol 3 (S243) ◽  
pp. 231-240 ◽  
Author(s):  
Jérôme Bouvier

AbstractStar-disk interaction is thought to drive the angular momentum evolution of young stars. In this review, I present the latest results obtained on the rotational properties of low mass and very low mass pre-main sequence stars. I discuss the evidence for extremely efficient angular momentum removal over the first few Myr of pre-main sequence evolution and describe recent results that support an accretion-driven braking mechanism. Angular momentum evolution models are presented and their implication for accretion disk lifetimes discussed.


2006 ◽  
Vol 2 (S240) ◽  
pp. 114-116
Author(s):  
Rainer Köhler ◽  
Monika G. Petr-Gotzens ◽  
Mark J. McCaughrean ◽  
Jerome Bouvier ◽  
Gaspard Duchêne ◽  
...  

AbstractWe report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5–15 arcmin (0.65 – 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at separations of 0.13 – 1.12 arcsec (60 – 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M⊙ is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (< 3′ from θ1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active. A detailed report of this work has been published in Astronomy & Astrophysics (Köhler et al. 2006).


2018 ◽  
Vol 619 ◽  
pp. A80 ◽  
Author(s):  
F. Gallet ◽  
E. Bolmont ◽  
J. Bouvier ◽  
S. Mathis ◽  
C. Charbonnel

Context. The surface angular velocity evolution of low-mass stars is now globally understood and the main physical mechanisms involved in it are observationally quite constrained. However, while the general behaviour of these mechanisms is grasped, their theoretical description is still under ongoing work. This is the case, for instance, about the description of the physical process that extracts angular momentum from the radiative core, which could be described by several theoretical candidates. Additionally, recent observations showed anomalies in the rotation period distribution of open cluster, main sequence, early K-type stars that cannot be reproduced by current angular momentum evolution models. Aims. In this work, we study the parameter space of star-planet system’s configurations to investigate if including the tidal star-planet interaction in angular momentum evolution models could reproduce the anomalies of this rotation period distribution. Methods. To study this effect, we use a parametric angular momentum evolution model that allows for core-envelope decoupling and angular momentum extraction by magnetized stellar wind that we coupled to an orbital evolution code where we take into account the torque due to the tides raised on the star by the planet. We explore different stellar and planetary configurations (stellar mass from 0.5 to 1.0 M⊙ and planetary mass from 10 M⊕ to 13 Mjup) to study their effect on the planetary orbital and stellar rotational evolution. Results. The stellar angular momentum is the most impacted by the star-planet interaction when the planet is engulfed during the early main sequence phase. Thus, if a close-in Jupiter-mass planet is initially located at around 50% of the stellar corotation radius, a kink in the rotational period distribution opens around late and early K-type stars during the early main sequence phase. Conclusions. Tidal star-planet interactions can create a kink in the rotation period distribution of low-mass stars, which could possibly account for unexpected scatter seen in the rotational period distribution of young stellar clusters.


2020 ◽  
Vol 494 (3) ◽  
pp. 4130-4148 ◽  
Author(s):  
Thomas J Haworth ◽  
James Cadman ◽  
Farzana Meru ◽  
Cassandra Hall ◽  
Emma Albertini ◽  
...  

ABSTRACT We use a suite of smoothed particle hydrodynamic simulations to investigate the susceptibility of protoplanetary discs to the effects of self-gravity as a function of star–disc properties. We also include passive irradiation from the host star using different models for the stellar luminosities. The critical disc-to-star mass ratio for axisymmetry (for which we produce criteria) increases significantly for low-mass stars. This could have important consequences for increasing the potential mass reservoir in a proto Trappist-1 system, since even the efficient Ormel et al. formation model will be influenced by processes like external photoevaporation, which can rapidly and dramatically deplete the dust reservoir. The aforementioned scaling of the critical Md/M* for axisymmetry occurs in part because the Toomre Q parameter has a linear dependence on surface density (which promotes instability) and only an $M_*^{1/2}$ dependence on shear (which reduces instability), but also occurs because, for a given Md/M*, the thermal evolution depends on the host star mass. The early phase stellar irradiation of the disc (for which the luminosity is much higher than at the zero age main sequence, particularly at low stellar masses) can also play a key role in significantly reducing the role of self-gravity, meaning that even solar mass stars could support axisymmetric discs a factor two higher in mass than usually considered possible. We apply our criteria to the DSHARP discs with spirals, finding that self-gravity can explain the observed spirals so long as the discs are optically thick to the host star irradiation.


2004 ◽  
Vol 215 ◽  
pp. 127-135
Author(s):  
John R. Stauffer

Bob Kraft (1967) showed that there is a break in the mean rotational velocity of stars at about spectral type F5, with more massive stars generally being rapid rotators and less massive stars generally being slow rotators. He also showed that in the late F spectral range at least, there is an evolution with time on the main sequence, with younger F stars being more rapidly rotating. Kraft's observational database extended only to about one solar mass due to the sensitivy limitations of photographic plates. Modern observations of low mass stars in open clusters, extending down in mass to nearly the hydrogen burning mass limit in a few clusters, have since been used to show that rotational spindown is the common feature of stars less massive than the sun but that there is a wide spread in rotational velocities when stars arrive on the ZAMS. I will review what is known empirically concerning the rotational velocities of intermediate and low mass field stars, using the open cluster data to place the field star observations in context.


2008 ◽  
Vol 4 (S252) ◽  
pp. 103-109 ◽  
Author(s):  
M. Cantiello ◽  
N. Langer

AbstractThermohaline mixing has recently been proposed to occur in low mass red giants, with large consequences for the chemical yields of low mass stars. We investigate the role of thermohaline mixing during the evolution of stars between 1 M⊙ and 3 M⊙, in comparison to other mixing processes acting in these stars. We confirm that thermohaline mixing has the potential to destroy most of the 3He which is produced earlier on the main sequence during the red giant stage. In our models we find that this process is working only in stars with initial mass M ≲ 1.5 M⊙. Moreover, we report that thermohaline mixing can be present during core helium burning and beyond in stars which still have a 3He reservoir. While rotational and magnetic mixing is negligible compared to the thermohaline mixing in the relevant layers, the interaction of thermohaline motions with differential rotation and magnetic fields may be essential to establish the time scale of thermohaline mixing in red giants.


2002 ◽  
Vol 12 ◽  
pp. 143-145 ◽  
Author(s):  
Lee G. Mundy ◽  
Friedrich Wyrowski ◽  
Sarah Watt

Millimeter and submillimeter wavelength images of massive star-forming regions are uncovering the natal material distribution and revealing the complexities of their circumstellar environments on size scales from parsecs to 100’s of AU. Progress in these areas has been slower than for low-mass stars because massive stars are more distant, and because they are gregarious siblings with different evolutionary stages that can co-exist even within a core. Nevertheless, observational goals for the near future include the characterization of an early evolutionary sequence for massive stars, determination if the accretion process and formation sequence for massive stars is similar to that of low-mass stars, and understanding of the role of triggering events in massive star formation.


Author(s):  
O. Lomax ◽  
A. P. Whitworth ◽  
D. A. Hubber

AbstractDisc fragmentation provides an important mechanism for producing low-mass stars in prestellar cores. Here, we describe smoothed particle hydrodynamics simulations which show how populations of prestellar cores evolve into stars. We find the observed masses and multiplicities of stars can be recovered under certain conditions.First, protostellar feedback from a star must be episodic. The continuous accretion of disc material on to a central protostar results in local temperatures which are too high for disc fragmentation. If, however, the accretion occurs in intense outbursts, separated by a downtime of ~ 104yr, gravitational instabilities can develop and the disc can fragment.Second, a significant amount of the cores’ internal kinetic energy should be in solenoidal turbulent modes. Cores with less than a third of their kinetic energy in solenoidal modes have insufficient angular momentum to form fragmenting discs. In the absence of discs, cores can fragment but results in a top-heavy distribution of masses with very few low-mass objects.


2015 ◽  
Vol 12 (S316) ◽  
pp. 328-333
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractOur knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).


Sign in / Sign up

Export Citation Format

Share Document