scholarly journals DIVISION III: PLANETARY SYSTEMS SCIENCES

2008 ◽  
Vol 4 (T27A) ◽  
pp. 149-153
Author(s):  
Edward L. G. Bowell ◽  
Karen J. Meech ◽  
Iwan P. Williams ◽  
Alan P. Boss ◽  
Guy J. Consolmagno ◽  
...  

Division III's activities focus on a broad range of astronomical research on bodies in the solar system (excluding the Sun), on extrasolar planets, and on the search for life in the Universe.

Author(s):  
John Chambers ◽  
Jacqueline Mitton

The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. This book tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system's layout, its age, and the most likely way it formed. Drawing on the history of astronomy and the latest findings in astrophysics and the planetary sciences, the book offers the most up-to-date and authoritative treatment of the subject available. It examines how the evolving universe set the stage for the appearance of our Sun, and how the nebulous cloud of gas and dust that accompanied the young Sun eventually became the planets, comets, moons, and asteroids that exist today. It explores how each of the planets acquired its unique characteristics, why some are rocky and others gaseous, and why one planet in particular—our Earth—provided an almost perfect haven for the emergence of life. The book takes readers to the very frontiers of modern research, engaging with the latest controversies and debates. It reveals how ongoing discoveries of far-distant extrasolar planets and planetary systems are transforming our understanding of our own solar system's astonishing history and its possible fate.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


2021 ◽  
pp. 31-46
Author(s):  
Raymond T. Pierrehumbert

‘Beautiful theories, ugly facts’ evaluates the theories on planetary systems, particularly the Solar System. In 1734, the Swedish polymath Emmanuel Swedenborg proposed that the Sun and all the planets condensed out of the same ball of gas, in what is probably the earliest statement of the nebular hypothesis. The nebular hypothesis entered something close to its modern form in the hands of the French mathematician Pierre-Simon Laplace, who in 1796 made the clear connection to Newtonian gravity. The angular momentum problem and the structure of a protoplanetary disk, the formation of rocky cores, and the gravitational accretion of gas in the disk also come under this topic.


2018 ◽  
Vol 184 ◽  
pp. 01004
Author(s):  
Sergio Cristallo

Stars are marvellous caldrons where all the elements of the Universe (apartfrom hydrogen and helium) have been synthesized. The solar system chemical distri-butionis the result of many pollution episodes from already extinct stellar generations, occurred at different epochs before the Sun formation. Main nucleosynthesis channels re-sponsiblefor the formation of heavy elements are the rapid neutron capture process (ther-process) and the slow neutron capture process (the s-process). Hereafter, I will describethe theory of the s-process and the stellar sites where it is active.


2020 ◽  
Vol 499 (1) ◽  
pp. 1212-1225
Author(s):  
Daohai Li ◽  
Alexander J Mustill ◽  
Melvyn B Davies

ABSTRACT Most stars form in a clustered environment. Both single and binary stars will sometimes encounter planetary systems in such crowded environments. Encounter rates for binaries may be larger than for single stars, even for binary fractions as low as 10–20 per cent. In this work, we investigate scatterings between a Sun–Jupiter pair and both binary and single stars as in young clusters. We first perform a set of simulations of encounters involving wide ranges of binaries and single stars, finding that wider binaries have larger cross-sections for the planet’s ejection. Secondly, we consider such scatterings in a realistic population, drawing parameters for the binaries and single stars from the observed population. The scattering outcomes are diverse, including ejection, capture/exchange, and collision. The binaries are more effective than single stars by a factor of several or more in causing the planet’s ejection and collision. Hence, in a cluster, as long as the binary fraction is larger than about 10 per cent, the binaries will dominate the scatterings in terms of these two outcomes. For an open cluster of a stellar density 50 pc−3, a lifetime 100 Myr, and a binary fraction 0.5, we estimate that Jupiters of the order of 1 per cent are ejected, 0.1 per cent collide with a star, 0.1 per cent change ownership, and 10 per cent of the Sun–Jupiter pairs acquire a stellar companion during scatterings. These companions are typically thousands of au distant and in half of the cases (so 5 per cent of all Sun–Jupiter pairs), they can excite the planet’s orbit through Kozai–Lidov mechanism before being stripped by later encounters. Our result suggests that the Solar system may have once had a companion in its birth cluster.


Daedalus ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 103-113 ◽  
Author(s):  
Scott Tremaine

Quasars emit more energy than any other object in the universe, yet are not much bigger than our solar system. Quasars are powered by giant black holes of up to ten billion (1010) times the mass of the sun. Their enormous luminosities are the result of frictional forces acting upon matter as it spirals toward the black hole, heating the gas until it glows. We also believe that black holes of one million to ten billion solar masses – dead quasars – are present at the centers of most galaxies, including our own. The mass of the central black hole appears to be closely related to other properties of its host galaxy, such as the total mass in stars, but the origin of this relation and the role that black holes play in the formation of galaxies are still mysteries.


2009 ◽  
Vol 5 (S264) ◽  
pp. 410-412
Author(s):  
Michal Křížek ◽  
Jan Brandts

AbstractThe expansion speed of the Universe is increasing (Glanz 1998). This acceleration is attributed to dark energy which acts almost uniformly everywhere (including the Solar system) and thus essentially influences the Hubble constant. Its current value on a distance of 1 AU is H0 = 10 m/(yr AU). This is quite a large number and thus, the impact of dark energy should be detectable in the Solar system. We will illustrate it by several examples. Dark energy may partially be caused by gravitational aberration of the Sun, planets and other bodies.


2009 ◽  
Vol 5 (S268) ◽  
pp. 71-79 ◽  
Author(s):  
Johannes Geiss ◽  
George Gloeckler

AbstractFor our understanding of the origin and evolution of baryonic matter in the Universe, the Protosolar Cloud (PSC) is of unique importance in two ways: 1) Up to now, many of the naturally occurring nuclides have only been detected in the solar system. 2) Since the time of solar system formation, the Sun and planets have been virtually isolated from the galactic nuclear evolution, and thus the PSC is a galactic sample with a degree of evolution intermediate between the Big Bang and the present.The abundances of the isotopes of hydrogen and helium in the Protosolar Cloud are primarily derived from composition measurements in the solar wind, the Jovian atmosphere and “planetary noble gases” in meteorites, and also from observations of density profiles inside the Sun. After applying the changes in isotopic and elemental composition resulting from processes in the solar wind, the Sun and Jupiter, PSC abundances of the four lightest stable nuclides are given.


2021 ◽  
pp. 47-75
Author(s):  
Raymond T. Pierrehumbert

‘What are planets made of?’ assesses what planets are made of, beginning by looking at the life cycle of stars, and the kinds of stars which populate the Universe. Although the first stars of the Universe could not have formed planetary systems, the process did not take long to get under way. The Milky Way galaxy formed not long after the Big Bang and has been building its stock of heavy elements ever since. Thus, our Solar System incorporates ingredients from a mix of myriad expired stars, most of which have been processed multiple times through short-lived stars.


2020 ◽  
Author(s):  
Ting Zeng ◽  
Huan Xu ◽  
Qiuyun Liu

The Earth is orbiting away from the Sun each year, and so are the other planets in the solar system. The Sun loses small amount of mass via the emission of photons and cosmic particles, and the slight decrease of solar gravitational pull results in the minute expansion of the orbits of the planets. Cumulatively, the universe is expanding. The gaseous feature of large planets can be explained by the more extensive volcanoes than that on the Earth. The slower deceleration of larger mass and faster acceleration of smaller mass triggered by Jupiter’s gravitational pull may result in sunspot.Therefore, starspots can be harnessed for the search of orbiting exoplanets.


Sign in / Sign up

Export Citation Format

Share Document