scholarly journals Stellar Core Collapse and Exotic Matter

2011 ◽  
Vol 7 (S279) ◽  
pp. 367-368
Author(s):  
Ken'ichiro Nakazato ◽  
Kohsuke Sumiyoshi

AbstractSome supernovae and gamma-ray bursts are thought to accompany a black hole formation. In the process of a black hole formation, a central core becomes hot and dense enough for hyperons and quarks to appear. In this study, we perform neutrino-radiation hydrodynamical simulations of a stellar core collapse and black hole formation taking into account such exotic components. In our computation, general relativity is fully considered under spherical symmetry. As a result, we find that the additional degrees of freedom soften the equation of state of matter and promote the black hole formation. Furthermore, their effects are detectable as a neutrino signal. We believe that the properties of hot and dense matter at extreme conditions are essential for the studies on the astrophysical black hole formation. This study will be hopefully a first step toward a physics of the central engine of gamma-ray bursts.

2020 ◽  
Vol 492 (1) ◽  
pp. 843-847
Author(s):  
Dafne Guetta ◽  
Roi Rahin ◽  
Imre Bartos ◽  
Massimo Della Valle

ABSTRACT The joint observation of core-collapse supernovae with gamma-ray bursts shows that jets can be launched in the aftermath of stellar core collapse, likely by a newly formed black hole that accretes matter from the star. Such gamma-ray bursts have only been observed accompanying Type Ibc supernovae, indicating a stellar progenitor that lost its hydrogen envelope before collapse. According to recent hypothesis, it is possible that jets are launched in core-collapse events even when the progenitors still retain their hydrogen envelopes; however, such jets are not able to burrow through the star and will be stalled into the interior of the progenitor star before escaping. These jets are called choked jets. High-energy neutrinos produced by such choked jets could escape the stellar envelope and could be observed. Here, we examine how multimessenger searches for high-energy neutrinos and core-collapse supernovae can detect or limit the fraction of stellar collapses that produce jets. We find that a high fraction of jet production is already limited by previous observational campaigns. We explore possibilities with future observations using Large Synoptic Survey Telescope, IceCube, and Km3NET.


2010 ◽  
Vol 721 (2) ◽  
pp. 1284-1294 ◽  
Author(s):  
Ken'ichiro Nakazato ◽  
Kohsuke Sumiyoshi ◽  
Shoichi Yamada

2011 ◽  
Vol 730 (2) ◽  
pp. 70 ◽  
Author(s):  
Evan O'Connor ◽  
Christian D. Ott

2012 ◽  
Vol 754 (1) ◽  
pp. 76 ◽  
Author(s):  
Luc Dessart ◽  
Evan O’Connor ◽  
Christian D. Ott

2011 ◽  
Vol 7 (S279) ◽  
pp. 75-82
Author(s):  
Paolo A. Mazzali

AbstractThe properties of the Supernovae discovered in coincidence with long-duration Gamma-ray Bursts and X-Ray Flashes are reviewed, and compared to those of SNe for which GRBs are not observed. The SNe associated with GRBs are of Type Ic, they are brighter than the norm, and show very broad absorption lines in their spectra, indicative of high expansion velocities and hence of large explosion kinetic energies. This points to a massive star origin, and to the birth of a black hole at the time of core collapse. There is strong evidence for gross asymmetries in the SN ejecta. The observational evidence seems to suggest that GRB/SNe are more massive and energetic than XRF/SNe, and come from more massive stars. While for GRB/SNe the collapsar model is favoured, XRF/SNe may host magnetars.


2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Jia-Shian Wang ◽  
Jeff Tseng ◽  
Samuel Gullin ◽  
Evan P. O’Connor

2021 ◽  
Vol 914 (2) ◽  
pp. 140
Author(s):  
Kuo-Chuan Pan ◽  
Matthias Liebendörfer ◽  
Sean M. Couch ◽  
Friedrich-Karl Thielemann

Sign in / Sign up

Export Citation Format

Share Document