Stellar Populations of the Outer Milky-Way Halo

2017 ◽  
Vol 13 (S334) ◽  
pp. 29-33
Author(s):  
Baslio Santiago ◽  
Elmer Luque ◽  
Adriano Pieres ◽  
Anna Bárbara Queiroz

AbstractThe stellar spheroidal components of the Milky-Way contain the oldest and most metal poor of its stars. Inevitably the processes governing the early stages of Galaxy evolution are imprinted upon them. According to the currently favoured hierarchical bottom-up scenario of galaxy formation, these components, specially the Galactic halo, are the repository of most of the mass built up from accretion events in those early stages. These events are still going on today, as attested by the long stellar streams associated to the Sagittarius dwarf galaxy and several other observed tidal substructure, whose geometry, extent, and kinematics are important constraints to reconstruct the MW gravitational potential and infer its total (visible + dark) mass. In addition, the remaining system of MW satellites is expected to be a fossil record of the much larger population of Galactic building blocks that once existed and got accreted. For all these reasons, it is crucial to unravel as much of this remaining population as possible, as well as the current stellar streams that orbit within the halo. The best bet to achieve this task is to carry out wide, deep, and multi-band photometric surveys that provide homogeneous stellar samples. In this contribution, we summarize the results of several years of work towards detecting and characterizing distant MW stellar systems, star clusters and dwarf spheroidals alike, with an emphasis on the analysis of data from the Dark Energy Survey (DES). We argue that most of the volume in distance, size and luminosity space, both in the Galaxy and in the Clouds, is still unprobed. We then discuss the perspectives of exploring this outer MW volume using the current surveys, as well as other current and future surveys, such as the Large Synoptic Survey Telescope (LSST).

2020 ◽  
Vol 494 (1) ◽  
pp. 983-1001 ◽  
Author(s):  
Alexander H Riley ◽  
Louis E Strigari

ABSTRACT There is increasing evidence that a substantial fraction of Milky Way satellite galaxies align in a rotationally supported plane of satellites, a rare configuration in cosmological simulations of galaxy formation. It has been suggested that other Milky Way substructures (namely young halo globular clusters and stellar/gaseous streams) similarly tend to align with this plane, accordingly dubbed the Vast Polar Structure (VPOS). Using systemic proper motions inferred from Gaia data, we find that globular cluster orbital poles are not clustered in the VPOS direction, though the population with the highest VPOS membership fraction is the young halo clusters (∼30 per cent). We additionally provide a current census of stellar streams, including new streams discovered using the Dark Energy Survey and Gaia data sets, and find that stellar stream normals are also not clustered in the direction of the VPOS normal. We also find that, based on orbit modelling, there is a likely association between NGC 3201 and the Gjöll stellar stream and that, based on its orbital pole, NGC 4147 is likely not a Sagittarius globular cluster. That the Milky Way’s accreted globular clusters and streams do not align in the same planar configuration as its satellites suggests that the plane of satellites is either a particularly stable orbital configuration or a population of recently accreted satellites. Neither of these explanations is particularly likely in light of other recent studies, leaving the plane of satellites problem as one of the more consequential open problems in galaxy formation and cosmology.


2019 ◽  
Vol 14 (S351) ◽  
pp. 170-173 ◽  
Author(s):  
Ricardo P. Schiavon ◽  
J. Ted Mackereth ◽  
Joel Pfeffer ◽  
Rob A. Crain ◽  
Jo Bovy

AbstractWe summarise recent results from analysis of APOGEE/Gaia data for stellar populations in the Galactic halo, disk, and bulge, leading to constraints on the contribution of dwarf galaxies and globular clusters to the stellar content of the Milky Way halo. Intepretation of the extant data in light of cosmological numerical simulations suggests that the Milky Way has been subject to an unusually intense accretion history at z ≳ 1.5.


2020 ◽  
Vol 636 ◽  
pp. A111 ◽  
Author(s):  
M. Aoki ◽  
W. Aoki ◽  
P. François

Context. Metal-poor components of dwarf galaxies around the Milky Way could be remnants of the building blocks of the Galactic halo structure. Low-mass stars that are currently observed as metal-poor stars are expected to have formed in chemically homogeneous clusters in the early phases of galaxy formation. They should have already disintegrated and should exhibit large scatter in abundance ratios of some sets of elements (e.g., Sr/Ba) in the Milky Way field stars. However, chemical abundance ratios are expected to cluster in very metal-poor stars in dwarf galaxies because the number of clusters formed in individual galaxies in the very early phase is expected to be quite limited. Aims. We examine the possible clustering of abundance ratios of Sr and Ba in the Sextans dwarf galaxy to test for the clustering star formation scenario. Methods. We investigate a total of 11 elements (C, Mg, Ca, Sc, Ti, Cr, Mn, Ni, Zn, Sr, Ba) in five stars in the Sextans dwarf galaxy. Previous studies suggest that these have similar abundance ratios. In this study, we focus on the abundance ratio of Sr to Ba. The observations are based on high-resolution spectroscopy (R = 40 000) using the Subaru Telescope High Dispersion Spectrograph. Results. The distribution of α/Fe abundance ratios of the Sextans dwarf galaxy stars is slightly lower than the average of the values of stars in the Galactic halo. The Sr/Ba abundance ratios for the five metal-poor stars are in good agreement, and this clumping is distinctive compared to the [Sr/Ba] spread seen in the metal-poor halo stars. We find that the probability of such clumping is very small if the Sextans stars have distributions of Sr and Ba abundances similar to halo stars. Conclusions. In the Sextans dwarf galaxy, five out of six of the extremely metal-poor stars for which abundance ratios are well studied so far show clear clustering in abundance ratios including Sr/Ba. These observations tend to support the hypothesis that these stars were formed from a cloud of homogeneous chemical composition.


2020 ◽  
Vol 500 (2) ◽  
pp. 2514-2524
Author(s):  
Joel Pfeffer ◽  
Carmela Lardo ◽  
Nate Bastian ◽  
Sara Saracino ◽  
Sebastian Kamann

ABSTRACT A number of the massive clusters in the halo, bulge, and disc of the Galaxy are not genuine globular clusters (GCs) but instead are different beasts altogether. They are the remnant nuclear star clusters (NSCs) of ancient galaxies since accreted by the Milky Way. While some clusters are readily identifiable as NSCs and can be readily traced back to their host galaxy (e.g. M54 and the Sagittarius Dwarf galaxy), others have proven more elusive. Here, we combine a number of independent constraints, focusing on their internal abundances and overall kinematics, to find NSCs accreted by the Galaxy and trace them to their accretion event. We find that the true NSCs accreted by the Galaxy are: M54 from the Sagittarius Dwarf, ω Centari from Gaia-Enceladus/Sausage, NGC 6273 from Kraken, and (potentially) NGC 6934 from the Helmi Streams. These NSCs are prime candidates for searches of intermediate-mass black holes (BHs) within star clusters, given the common occurrence of galaxies hosting both NSCs and central massive BHs. No NSC appears to be associated with Sequoia or other minor accretion events. Other claimed NSCs are shown not to be such. We also discuss the peculiar case of Terzan 5, which may represent a unique case of a cluster–cluster merger.


2016 ◽  
Vol 11 (S321) ◽  
pp. 10-12
Author(s):  
Charli M. Sakari

AbstractObservations of stellar streams in M31’s outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)—this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variations. The other three GCs (H10, H23, and PA17) are more metal-rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way GCs, and other M31 clusters, H10 and PA17 have moderately-low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17’s high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud (LMC). None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW Cloud, and PA53 and PA56 may be associated with the Eastern Cloud.


1985 ◽  
Vol 106 ◽  
pp. 603-610
Author(s):  
S. Michael Fall

In broad outline, the traditional picture for the formation of the Milky Way can be summarized as follows. The proto-galaxy consisted of a slowly rotating cloud of metal-free gas that cooled by bremsstrahlung and recombination radiation. As the internal pressure of the gas decreased, it collapsed in stages with smaller dimensions, faster rotation velocities and flatter shapes until it reached centrifugal support in a fundamental plane. At the same time, the gas was progressively depleted by the formation of stars and enriched with heavy elements by the ejecta from previous generations. The result is a general correlation between the kinematic properties, chemical compositions and relative ages of the stellar populations within the Galaxy. This picture was formulated at the Vatican symposium by Oort (1958) and others and was elaborated by Eggen, Lynden-Bell & Sandage (1962), Sandage, Freeman & Stokes (1970), Gott & Thuan (1976), Larson (1976) and others. Much of the recent work on galaxy formation has been an attempt to extend these ideas to a more comprehensive picture that includes large quantities of dark matter. The purpose of this article is to review several topics concerning the collapse phase in the evolution of the Milky Way.


2020 ◽  
Vol 497 (4) ◽  
pp. 4162-4182 ◽  
Author(s):  
Eugene Vasiliev ◽  
Vasily Belokurov

ABSTRACT We use the astrometric and photometric data from Gaia Data Release 2 and line-of-sight velocities from various other surveys to study the 3D structure and kinematics of the Sagittarius dwarf galaxy. The combination of photometric and astrometric data makes it possible to obtain a very clean separation of Sgr member stars from the Milky Way foreground; our final catalogue contains 2.6 × 105 candidate members with magnitudes G &lt; 18, more than half of them being red clump stars. We construct and analyse maps of the mean proper motion and its dispersion over the region ∼30 × 12 deg, which show a number of interesting features. The intrinsic 3D density distribution (orientation, thickness) is strongly constrained by kinematics; we find that the remnant is a prolate structure with the major axis pointing at ∼45° from the orbital velocity and extending up to ∼5 kpc, where it transitions into the stream. We perform a large suite of N-body simulations of a disrupting Sgr galaxy as it orbits the Milky Way over the past 2.5 Gyr, which are tailored to reproduce the observed properties of the remnant (not the stream). The richness of available constraints means that only a narrow range of parameters produce a final state consistent with observations. The total mass of the remnant is $\sim \!4\times 10^8\, \mathrm{M}_\odot$, of which roughly a quarter resides in stars. The galaxy is significantly out of equilibrium, and even its central density is below the limit required to withstand tidal forces. We conclude that the Sgr galaxy will likely be disrupted over the next Gyr.


2009 ◽  
Vol 5 (S262) ◽  
pp. 265-269
Author(s):  
Basílio Santiago ◽  
Brian Yanny

AbstractThe Dark Energy Survey (DES) will cover 5000 sq. deg. in grizY filters. Although its main goals are related to cosmology, it will yield photometric measurements of over 108 stars, most of them belonging to the Galaxy. DES will increase the sampling depth of very low-luminosity stellar and sub-stellar species, such as white, red, and brown dwarfs, by a factor of several as compared to SDSS. The structure of the Galactic halo, including its complex sub-structures caused by accretion remnants and globular cluster tidal tails, will also be probed and analyzed. DES will also allow comparison of star counts between Northern and Southern Galactic hemispheres to unprecedented detail. Finally, a significant sample of stars in the outskirts of the Large Magellanic Cloud (LMC) will be studied, providing new light into the debate about the existence of an LMC spheroidal component. These, among other important research goals attainable with the DES stellar data, are discussed in this contribution.


2019 ◽  
Vol 491 (3) ◽  
pp. 3672-3701 ◽  
Author(s):  
N Boardman ◽  
G Zasowski ◽  
A Seth ◽  
J Newman ◽  
B Andrews ◽  
...  

ABSTRACT The Milky Way provides an ideal laboratory to test our understanding of galaxy evolution, owing to our ability to observe our Galaxy over fine scales. However, connecting the Galaxy to the wider galaxy population remains difficult, due to the challenges posed by our internal perspective and to the different observational techniques employed. Here, we present a sample of galaxies identified as Milky Way analogues on the basis of their stellar masses and bulge-to-total ratios, observed as part of the Mapping Nearby Galaxies at Apache Point Observatory survey. We analyse the galaxies in terms of their stellar kinematics and populations as well as their ionized gas contents. We find our sample to contain generally young stellar populations in their outskirts. However, we find a wide range of stellar ages in their central regions, and we detect central active galactic nucleus-like or composite-like activity in roughly half of the sample galaxies, with the other half consisting of galaxies with central star-forming emission or emission consistent with old stars. We measure gradients in gas metallicity and stellar metallicity that are generally flatter in physical units than those measured for the Milky Way; however, we find far better agreement with the Milky Way when scaling gradients by galaxies’ disc scale lengths. From this, we argue much of the discrepancy in metallicity gradients to be due to the relative compactness of the Milky Way, with differences in observing perspective also likely to be a factor.


2018 ◽  
Vol 14 (S344) ◽  
pp. 130-133 ◽  
Author(s):  
Thomas Schmidt ◽  
Maria-Rosa Cioni ◽  
Florian Niederhofer ◽  
Jonathan Diaz ◽  
Gal Matijevic

AbstractDwarf galaxies enable us to study early phases of galaxy evolution and are key to many open questions about the hierarchical structure of the Universe. The Large and Small Magellanic Cloud (LMC and SMC) are the most luminous dwarf galaxy satellites of the Milky Way (MW). They are most likely gravitationally bound to each other, and their last interaction occurred about 200 Myr ago. Also, they are in an early phase of minor merging with the MW and will impact the Galactic structure in the future because of their relatively large mass. However, there are still major uncertainties regarding their origin and their interactions with one another and with the Milky Way. We cross-correlated the VMC and Gaia DR2 data to select a sample of stars that likely belong to the Magellanic Bridge, a feature formed of gas and stars which is connecting the LMC and the SMC. We removed potential MW foregound stars using a combination of parallax and colour-magnitude criteria and calculated the proper motions of the Bridge member stars. Our analysis supports a motion of star towards the LMC, which was found to be in good agreement with a dynamical simulation, of the SMC being stripped by the LMC.


Sign in / Sign up

Export Citation Format

Share Document