A Dust-Enshrouded Tidal Disruption Event in a Luminous Infared Galaxy

2017 ◽  
Vol 14 (S339) ◽  
pp. 65-65
Author(s):  
S. Mattila

AbstractThis paper presented the discovery of an energetic nuclear transient from near-infrared monitoring of nearby starburst and luminous infrared galaxies. The transient radiated at least 1.5E+52 erg in the infrared but remained elusive at optical and X-ray wavelengths. We interpret its properties as arising from a stellar tidal disruption event (TDE) close to a supermassive black hole. Much of its emission must have been reprocessed by dense gas and re-radiated at infrared wavelengths by dust, suggesting a way for reducing the tension between theoretical luminosity predictions and observations of TDEs. Such events are not detectable by optical, UV or soft X-ray observations, and might represent just the tip of the iceberg of a missed TDE population in the local Universe. That population could be more numerous at higher redshifts where luminous infrared galaxies are more common.

2021 ◽  
Vol 921 (2) ◽  
pp. L40
Author(s):  
Joheen Chakraborty ◽  
Erin Kara ◽  
Megan Masterson ◽  
Margherita Giustini ◽  
Giovanni Miniutti ◽  
...  

2018 ◽  
Vol 475 (3) ◽  
pp. 4011-4019 ◽  
Author(s):  
J S Bright ◽  
R P Fender ◽  
S E Motta ◽  
K Mooley ◽  
Y C Perrott ◽  
...  

2017 ◽  
Vol 18 (3) ◽  
pp. 211-212
Author(s):  
C Sivaram ◽  
K Arun ◽  
O V Kiren

AbstractWe draw attention to a curious coincidence wherein the most (steadily emitting) luminous objects in the Universe from stellar X-ray sources to ultra-luminous quasars and Ultra Luminous Infrared Galaxies, steadily emit a power per unit mass, which is just the same value as the maximal metabolic rate in (warm-blooded) bio-organisms.


2012 ◽  
Vol 8 (S292) ◽  
pp. 209-214
Author(s):  
Padelis P. Papadopoulos ◽  
Zhi-Yu Zhang ◽  
Axel Weiss ◽  
Paul van der Werf ◽  
Kate Isaak ◽  
...  

AbstractResults from a large, multi-J CO, 13CO, and HCN line survey of Luminous Infrared Galaxies (LIRGs: LIR≥ 1010 L⊙) in the local Universe (z≤0.1), complemented by CO J=4–3 up to J=13–12 observations from the Herschel Space Observatory (HSO), paints a new picture for the average conditions of the molecular gas of the most luminous of these galaxies with turbulence and/or large cosmic ray (CR) energy densities UCR rather than far-UV/optical photons from star-forming sites as the dominant heating sources. Especially in ULIRGs (LIR>1012 L⊙) the Photon Dominated Regions (PDRs) can encompass at most a few % of their molecular gas mass while the large UCR∼ 103 UCR, Galaxy, and the strong turbulence in these merger/starbursts, can volumetrically heat much of their molecular gas to Tkin∼ (100-200) K, unhindered by the high dust extinctions. Moreover the strong supersonic turbulence in ULIRGs relocates much of their molecular gas at much higher average densities (≥104 cm−3) than in isolated spirals (∼ 102–103 cm−3). This renders low-J CO lines incapable of constraining the properties of the bulk of the molecular gas in ULIRGs, with substantial and systematic underestimates of its mass possible when only such lines are used. Finally a comparative study of multi-J HCN lines and CO SLEDs from J=1–0 up to J=13–12 of NGC 6240 and Arp 193 offers a clear example of two merger/starbursts whose similar low-J CO SLEDs, and LIR/LCO,1−0 and LHCN, 1−0/LCO,1-0 ratios (proxies of the so-called SF efficiency and dense gas mass fraction), yield no indications about their strongly diverging CO SLEDs beyond J=4–3, and ultimately the different physical conditions in their molecular ISM. The much larger sensitivity of ALMA and its excellent site in the Atacama desert now allows the observations necessary to assess the dominant energy sources of the molecular gas and its mass in LIRGs without depending on the low-J CO lines.


2019 ◽  
Vol 492 (2) ◽  
pp. 1634-1640
Author(s):  
Sudip Chakraborty ◽  
Sudip Bhattacharyya ◽  
Chandrachur Chakraborty ◽  
A R Rao

ABSTRACT An estimate of the jet inclination angle relative to the accreting black hole’s spin can be useful to probe the jet triggering mechanism and the disc–jet coupling. A tidal disruption event (TDE) of a star by a supermassive spinning black hole provides an excellent astrophysical laboratory to study the jet direction through the possibility of jet precession. In this work, we report a new method to constrain the jet inclination angle β and apply it to the well-sampled jetted TDE Swift J1644+57. This method involves X-ray data analysis and comparisons of jet models with broad properties of the observed X-ray dips, to estimate the upper limit of the extent of the contribution of a plausible jet precession to these X-ray dips. From this limit, we find that β is very likely to be less than ∼15° for Swift J1644+57. Such a well-constrained jet inclination angle could be useful to probe the jet physics. The main advantage of our method is that it does not need to assume an origin of the observed X-ray dips, and the conclusion does not depend on any particular type of jet precession (e.g. the one due to the Lense–Thirring effect) or any specific value of precession frequency or any particular jet model. These make this method reliable and applicable to other jetted TDEs, as well as to other jetted accreting systems.


2020 ◽  
Vol 497 (2) ◽  
pp. 1925-1934 ◽  
Author(s):  
Sebastian Gomez ◽  
Matt Nicholl ◽  
Philip Short ◽  
Raffaella Margutti ◽  
Kate D Alexander ◽  
...  

ABSTRACT AT 2018hyz (= ASASSN-18zj) is a tidal disruption event (TDE) located in the nucleus of a quiescent E+A galaxy at a redshift of z = 0.04573, first detected by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present optical+UV photometry of the transient, as well as an X-ray spectrum and radio upper limits. The bolometric light curve of AT 2018hyz is comparable to other known TDEs and declines at a rate consistent with a t−5/3 at early times, emitting a total radiated energy of E = 9 × 1050 erg. An excess bump appears in the UV light curve about 50 d after bolometric peak, followed by a flattening beyond 250 d. We detect a constant X-ray source present for at least 86 d. The X-ray spectrum shows a total unabsorbed flux of ∼4 × 10−14 erg cm−2 s−1 and is best fit by a blackbody plus power-law model with a photon index of Γ = 0.8. A thermal X-ray model is unable to account for photons >1 keV, while a radio non-detection favours inverse-Compton scattering rather than a jet for the non-thermal component. We model the optical and UV light curves using the Modular Open-Source Fitter for Transients (MOSFiT) and find a best fit for a black hole of 5.2 × 106 M⊙ disrupting a 0.1 M⊙ star; the model suggests the star was likely only partially disrupted, based on the derived impact parameter of β = 0.6. The low optical depth implied by the small debris mass may explain how we are able to see hydrogen emission with disc-like line profiles in the spectra of AT 2018hyz (see our companion paper).


2012 ◽  
Vol 39 ◽  
pp. 02002 ◽  
Author(s):  
R.D. Saxton ◽  
A.M. Read ◽  
S. Komossa ◽  
P. Esquej

2012 ◽  
Vol 143 (6) ◽  
pp. 130 ◽  
Author(s):  
Michelle M. Buxton ◽  
Charles D. Bailyn ◽  
Holly L. Capelo ◽  
Ritaban Chatterjee ◽  
Tolga Dinçer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document