The role of asymptotic giant branch stars in the chemical evolution of the Galaxy

2018 ◽  
Vol 14 (S343) ◽  
pp. 510-511
Author(s):  
G. Tautvaišienė ◽  
C. Viscasillas Vázquez ◽  
V. Bagdonas ◽  
R. Smiljanic ◽  
A. Drazdauskas ◽  
...  

AbstractAsymptotic giant branch stars play an important role in enriching galaxies by s-process elements. Recent studies have shown that their role in producing s-process elements in the Galactic disc was underestimated and should be reconsidered. Based on high-resolution spectra we have determined abundances of neutron-capture elements in a sample of 310 stars located in the field and open clusters and investigated elemental enrichment patterns according to their age and mean galactocentric distances.

2002 ◽  
Vol 337 (3) ◽  
pp. 851-860 ◽  
Author(s):  
C. J. Mooney ◽  
W. R. J. Rolleston ◽  
F. P. Keenan ◽  
P. L. Dufton ◽  
J. V. Smoker ◽  
...  

Science ◽  
2014 ◽  
Vol 345 (6197) ◽  
pp. 650-653 ◽  
Author(s):  
Maria Lugaro ◽  
Alexander Heger ◽  
Dean Osrin ◽  
Stephane Goriely ◽  
Kai Zuber ◽  
...  

Among the short-lived radioactive nuclei inferred to be present in the early solar system via meteoritic analyses, there are several heavier than iron whose stellar origin has been poorly understood. In particular, the abundances inferred for 182Hf (half-life = 8.9 million years) and 129I (half-life = 15.7 million years) are in disagreement with each other if both nuclei are produced by the rapid neutron-capture process. Here, we demonstrate that contrary to previous assumption, the slow neutron-capture process in asymptotic giant branch stars produces 182Hf. This has allowed us to date the last rapid and slow neutron-capture events that contaminated the solar system material at ∼100 million years and ∼30 million years, respectively, before the formation of the Sun.


2012 ◽  
Vol 8 (S287) ◽  
pp. 245-249
Author(s):  
W. Cotton ◽  
G. Perrin ◽  
R. Millan-Gabet ◽  
O. Delaa ◽  
B. Mennesson

AbstractAsymptotic Giant Branch Stars (AGB) are evolved, mass losing red giants with tenuous molecular envelopes which have been the subject of much recent study using infrared and radio interferometers. In oxygen rich stars, radio SiO masers form in the outer regions of the molecular envelopes and are powerful diagnostics of the extent of these envelopes. Spectroscopically resolved infrared interferometry helps constrain the extent of various species in the molecular layer. We made VLBA 7 mm SiO maser, Keck Interferometer near IR and VLTI/MIDI mid IR high resolution observations of the stars U Ari, W Cnc, RX Tau, RT Aql, S Ser and V Mon. This paper presents evidence that the SiO is depleted from the gas phase and speculate that it is frozen onto Al2O3 grains and that radiation pressure on these grains help drive the outflow.


1989 ◽  
Vol 120 ◽  
pp. 210-214
Author(s):  
Alwyn Wootten

Open slit spectra of planetary nebulae, in which images of the object are recorded in the light of several spectral lines on a single plate, have long proven a useful diagnostic of nebular properties and morphology. Fortunately, the reasonably simple structure of most planetaries greatly aids interpretation of the images. The dust-enshrouded mass-losing asymptotic giant branch stars from which planetaries evolve have now also been imaged at millimeter wavelengths. These high-resolution images have demonstrated the role of photochemistry in molding the composition of circumstellar shells. This powerful techinique is less well-developed as a tool for analyzing the structure of localized density concentrations in molecular clouds, the cores in which stars form. Even pre-astral cores, in which stars have not yet formed, may have an extended and intricate geometry which renders mapping tedious and masks their true structure. Their basic pre-astral structure may be complexly contorted by the character and extent of star formation within them. How, then, does our perception of the structure of a core depend upon the line in whose light it is imaged? Which lines optimally determine physical structure? How should chemical differences, perceived by comparisons of images in different lines, be used to determine the physical characteristics of a core?


1999 ◽  
Vol 191 ◽  
pp. 579-588 ◽  
Author(s):  
A. Lançon

Asymptotic giant branch stars are essential contributors to the near and mid-IR emission of intermediate age (108-109 yr old) stellar populations. Detecting this light will set constraints on the star formation history in galaxies and, conversely, the search for AGB signatures in well studied populations will help us reduce some of the still large uncertainties in AGB models. This paper reviews how AGB stars are currently included in population synthesis models and which spectral features can be used to identify their emission in galaxy light; targets for observational tests are suggested, and some observational and theoretical difficulties are discussed.


Sign in / Sign up

Export Citation Format

Share Document