Control of Physical Aging in Super-Glassy Polymer Mixed Matrix Membranes

2020 ◽  
Vol 53 (7) ◽  
pp. 1381-1388 ◽  
Author(s):  
Stefan J. D. Smith ◽  
Rujing Hou ◽  
Kristina Konstas ◽  
Ammara Akram ◽  
Cher Hon Lau ◽  
...  
2016 ◽  
Vol 4 (27) ◽  
pp. 10627-10634 ◽  
Author(s):  
Stefan J. D. Smith ◽  
Cher Hon Lau ◽  
James I. Mardel ◽  
Melanie Kitchin ◽  
Kristina Konstas ◽  
...  

Addressing the mechanical weakness and physical aging of glassy mixed matrix membranes to realise their potential for enhancing the separation performance of current membrane technologies.


2016 ◽  
Vol 52 (32) ◽  
pp. 5581-5584 ◽  
Author(s):  
Tamoghna Mitra ◽  
Rupesh S. Bhavsar ◽  
Dave J. Adams ◽  
Peter M. Budd ◽  
Andrew I. Cooper

Addition of a cheap, nanoparticulate, hypercrosslinked polymer “sponge” to the high-free-volume glassy polymer PIM-1 gives mixed matrix membranes with enhanced permeability and improved aging behaviour.


2015 ◽  
Vol 3 (29) ◽  
pp. 15241-15247 ◽  
Author(s):  
Melanie Kitchin ◽  
Jesse Teo ◽  
Kristina Konstas ◽  
Cher Hon Lau ◽  
Christopher J. Sumby ◽  
...  

The effect of controlling interactions between the components in a mixed-matrix membrane at the molecular level has been explored.


2020 ◽  
Vol 12 (41) ◽  
pp. 46756-46766 ◽  
Author(s):  
Marzieh Tamaddondar ◽  
Andrew B. Foster ◽  
Mariolino Carta ◽  
Patricia Gorgojo ◽  
Neil B. McKeown ◽  
...  

2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


2019 ◽  
Vol 591 ◽  
pp. 117348 ◽  
Author(s):  
Roshni L. Thankamony ◽  
Xiang Li ◽  
Swapan K. Das ◽  
Mayur M. Ostwal ◽  
Zhiping Lai

2015 ◽  
Vol 3 (8) ◽  
pp. 4510-4521 ◽  
Author(s):  
Gongping Liu ◽  
Wei-Song Hung ◽  
Jie Shen ◽  
Qianqian Li ◽  
Yun-Hsuan Huang ◽  
...  

Molecular interactions were constructed to control polymer chain conformation to fabricate mixed matrix membranes with tunable free volumes, exhibiting simultaneously improved butanol permeability and selectivity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mehtap Safak Boroglu ◽  
Ismail Boz ◽  
Busra Kaya

Abstract In our study, the synthesis of zeolitic imidazolate framework (ZIF-12) crystals and the preparation of mixed matrix membranes (MMMs) with various ZIF-12 loadings were targeted. The characterization of ZIF-12 and MMMs were carried out by Fourier transform infrared spectroscopy analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and thermomechanical analysis. The performance of MMMs was measured by the ability of binary gas separation. Commercial polyetherimide (PEI-Ultem® 1000) polymer was used as the polymer matrix. The solution casting method was utilized to obtain dense MMMs. In the SEM images of ZIF-12 particles, the particles with a rhombic dodecahedron structure were identified. From SEM images, it was observed that the distribution of ZIF-12 particles in the MMMs was homogeneous and no agglomeration was present. Gas permeability experiments of MMMs were measured for H2, CO2, and CH4 gases at steady state, at 4 bar and 35 °C by constant volume-variable pressure method. PEI/ZIF-12-30 wt% MMM exhibited high permeability and ideal selectivity values for H2/CH4 and CO2/CH4 were P H 2 / CH 4 = 331.41 ${P}_{{\text{H}}_{2}/{\text{CH}}_{4}}=331.41$ and P CO 2 / CH 4 = 53.75 ${P}_{{\text{CO}}_{2}/{\text{CH}}_{4}}=53.75$ gas pair.


Sign in / Sign up

Export Citation Format

Share Document