scholarly journals Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein–Protein Interactions─A Method for All Seasons

2021 ◽  
Author(s):  
Lolita Piersimoni ◽  
Panagiotis L. Kastritis ◽  
Christian Arlt ◽  
Andrea Sinz
2017 ◽  
Vol 114 (9) ◽  
pp. 2224-2229 ◽  
Author(s):  
Daniel A. Weisz ◽  
Haijun Liu ◽  
Hao Zhang ◽  
Sundarapandian Thangapandian ◽  
Emad Tajkhorshid ◽  
...  

Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein–protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the “mass tags” selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein–protein interactions in membrane protein complexes.


2021 ◽  
Author(s):  
Dmitri R. Davydov ◽  
Bikash Dangi ◽  
Guihua Yue ◽  
Bhagwat Prasad ◽  
Viktor G. Zgoda

This study aimed on exploration of the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) in the human liver on drug metabolism. Using membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide (BPM) and 4-(N-succinimidylcarboxy)benzophenone (BPS), we explored the array of its protein-protein interactions (proteome) in human liver microsomes (HLM) with chemical cross-linking mass spectrometry (CXMS). Exposure of bait-incorporated HLM samples to light was followed by isolation of the His-tagged bait protein and its cross-linked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the cross-linked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively cross-linked partners of CYP2E1 are cytochromes P450 2A6, 3A4, 2C9, and 4A11. We also detected the conjugates of CYP2E1 with UDP-glucuronosyltransferases (UGTs) 1A6, 1A9, 2B4, 2B15, and 2B17. These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes. Of particular interest is the observation of efficient cross-linking of CYP2E1 with CYP4A11. This enzyme plays a central role in the synthesis of vasoactive eicosanoids and its interactions with alcohol-inducible CYP2E1 may shed light on the mechanisms of alcohol-induced hypertension.


2020 ◽  
Vol 19 (7) ◽  
pp. 1161-1178 ◽  
Author(s):  
Andreas Linden ◽  
Markus Deckers ◽  
Iwan Parfentev ◽  
Ralf Pflanz ◽  
Bettina Homberg ◽  
...  

Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins, but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labeling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labeled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly because of the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8Δ mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.


2008 ◽  
Vol 8 (3) ◽  
pp. 409-420 ◽  
Author(s):  
Haizhen Zhang ◽  
Xiaoting Tang ◽  
Gerhard R. Munske ◽  
Nikola Tolic ◽  
Gordon A. Anderson ◽  
...  

2020 ◽  
Author(s):  
Jian-Hua Wang ◽  
Yu-Liang Tang ◽  
Rohit Jain ◽  
Fan Xiao ◽  
Zhou Gong ◽  
...  

AbstractChemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) has become a widely used method for protein structure analysis. Central to this technology are chemical cross-linkers. The most popular cross-linkers are N-hydroxysuccinimide (NHS) esters, which react with protein amino groups relatively slowly over 10 minutes or more while in competition with the hydrolysis reaction of NHS esters. To improve the speed of cross-linking, we developed a new class of amine-selective and non-hydrolyzable di-ortho-phthalaldehyde (DOPA) cross-linkers. DOPA can cross-link proteins in 10 seconds under near physiological conditions, which is 60 times faster than the NHS ester cross-linker DSS. DOPA also works at low pH, low temperature, or in the presence of high concentrations of denaturants such as 8 M urea or 6 M guanidine hydrochloride. Further, DOPA-mediated pulse cross-linking captured the dynamic conformational changes associated with RNase A unfolding. Lastly, DOPA outperformed DSS at capturing weak but specific protein-protein interactions.


2018 ◽  
Author(s):  
Therese Dau ◽  
Kapil Gupta ◽  
Imre Berger ◽  
Juri Rappsilber

ABSTRACTCross-linking/mass spectrometry has become an important approach for studying protein structures and protein-protein interactions. The amino acid composition of some protein regions impedes the detection of cross-linked residues, although it would yield invaluable information for protein modelling. Here, we report on a sequential digestion strategy with trypsin and elastase to penetrate regions with a low density of trypsin cleavage sites. We exploited intrinsic substrate recognition properties of elastase to specifically target larger tryptic peptides. Our application of this protocol to the TAF4-12 complex allowed us to identify cross-links in previously inaccessible regions.


Sign in / Sign up

Export Citation Format

Share Document