Reduced Aerosol Uptake of Hydroperoxyl Radical May Increase the Sensitivity of Ozone Production to Volatile Organic Compounds

Author(s):  
Huan Song ◽  
Keding Lu ◽  
Huabin Dong ◽  
Zhaofeng Tan ◽  
Shiyi Chen ◽  
...  
2013 ◽  
Vol 13 (5) ◽  
pp. 11745-11788 ◽  
Author(s):  
L. K. Xue ◽  
T. Wang ◽  
H. Guo ◽  
D. R. Blake ◽  
J. Tang ◽  
...  

Abstract. The chemistry of the natural atmosphere and the influence by long-range transport of air pollution are key issues in the atmospheric sciences. Here we present two intensive field measurements of volatile organic compounds (VOCs) in late spring and summer of 2003 at Mt. Waliguan (WLG, 36.28° N, 100.90° E, 3816 m a.s.l.), a baseline station in the northeast part of Qinghai-Tibetan Plateau. Most VOC species exhibited higher concentrations in late spring than in summer. A typical diurnal variation was observed with higher nighttime levels, in contrast to results from other mountainous sites. Five different air masses were identified from backward trajectory analysis showing distinct VOC speciation. Air masses originating from the central Eurasian continent contained the lowest VOC levels compared to the others that were impacted by anthropogenic emissions from China and the Indian sub-continent. The data were compared with the TRACE-P (Transport and Chemical Evolution over the Pacific) data to examine the inflow and outflow of air pollution over the China sub-continent. The results show that the free troposphere over China may be affected by the inflow from the Eurasian continent in spring, and the emissions in China may not have a significant influence on the free tropospheric outflow. A photochemical box model based on the Master Chemical Mechanism (version 3.2) and constrained by a full suite of measurements was developed to probe the photochemistry of atmosphere at WLG. Our results show net ozone production from in-situ photochemistry during both late spring and summer. Oxidation of nitric oxide (NO) by the hydroperoxyl radical (HO2) dominates the ozone production relative to the oxidation by the organic peroxy radicals (RO2), and the ozone is primarily destroyed by photolysis and reactions with the HOx(HOx = OH + HO2) radicals. Ozone photolysis is the predominant primary source of radicals (ROx = OH + HO2 + RO2), followed by the photolysis of oxygenated VOCs and hydrogen peroxides. The radical losses are governed by the self and cross reactions among the radicals. The findings can provide insights into the background chemistry and the impacts of pollution transport on the pristine atmosphere over the Eurasian continent.


2017 ◽  
Author(s):  
Bianca Baier ◽  
William Brune ◽  
David Miller ◽  
Donald Blake ◽  
Russell Long ◽  
...  

Abstract. Chemical models must accurately calculate the ozone formation rate, P(O3), to accurately predict ozone levels and test mitigation strategies. However, model chemical mechanisms can contain large uncertainties in P(O3) calculations, which can create uncertainties in ozone forecasts especially during the summertime when P(O3) can be high. One way to test mechanisms is to evaluate model P(O3) using direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS) measured net P(O3) in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3) was compared to rates calculated by a photochemical box model using a lumped and a more explicit chemical mechanism. Observed P(O3) was up to a factor of two higher than that modeled during early morning hours when nitric oxide (NO) levels were high, contrary to traditional ozone chemistry theory. This disagreement may be due to model underestimation of hydroperoxyl (HO2) radicals relative to observations at high NO levels. These additional peroxyl radicals could come from the MOPS chamber chemistry or from missing volatile organic compounds co-emitted with NOx; additional cycling of OH into HO2 through reactions involving nitric oxide provides an alternate explanation for higher measured than modeled P(O3). Although the MOPS measurements are new, comparisons of observed and modeled P(O3) in NO space show a similar behavior to other comparisons between P(O3) derived from measurements and modeled P(O3). These comparisons can have implications for the sensitivity of P(O3) to nitrogen oxides and volatile organic compounds during morning hours, and can possibly affect ozone reduction strategies for the region surrounding Golden, CO in addition to other urban and suburban areas that are in non-attainment with national ozone regulations.


2013 ◽  
Vol 13 (17) ◽  
pp. 8551-8567 ◽  
Author(s):  
L. K. Xue ◽  
T. Wang ◽  
H. Guo ◽  
D. R. Blake ◽  
J. Tang ◽  
...  

Abstract. The chemistry of the natural atmosphere and the influence by long-range transport of air pollution are key issues in the atmospheric sciences. Here we present two intensive field measurements of volatile organic compounds (VOCs) in late spring and summer of 2003 at Mt. Waliguan (WLG, 36.28° N, 100.90° E, 3816 m a.s.l.), a baseline station in the northeast part of the Qinghai-Tibetan Plateau. Most VOC species exhibited higher concentrations in late spring than in summer. A typical diurnal variation was observed with higher nighttime levels, in contrast to results from other mountainous sites. Five different air masses were identified from backward trajectory analysis showing distinct VOC speciation. Air masses originating from the central Eurasian continent contained the lowest VOC levels compared to the others that were impacted by anthropogenic emissions from China and the Indian subcontinent. A photochemical box model based on the Master Chemical Mechanism (version 3.2) and constrained by a full suite of measurements was developed to probe the photochemistry of atmosphere at WLG. Our results show net ozone production from in situ photochemistry during both late spring and summer. Oxidation of nitric oxide (NO) by the hydroperoxyl radical (HO2) dominates the ozone production relative to the oxidation by the organic peroxy radicals (RO2), and the ozone is primarily destroyed by photolysis and reactions with the HOx (HOx = OH + HO2) radicals. Ozone photolysis is the predominant primary source of radicals (ROx = OH + HO2 + RO2), followed by the photolysis of secondary oxygenated VOCs and hydrogen peroxides. The radical losses are governed by the self and cross reactions among the radicals. Overall, the findings of the present study provide insights into the background chemistry and the impacts of pollution transport on the pristine atmosphere over the Eurasian continent.


2021 ◽  
Vol 21 (2) ◽  
pp. 853-874
Author(s):  
Gillian D. Thornhill ◽  
William J. Collins ◽  
Ryan J. Kramer ◽  
Dirk Olivié ◽  
Ragnhild B. Skeie ◽  
...  

Abstract. This paper quantifies the pre-industrial (1850) to present-day (2014) effective radiative forcing (ERF) of anthropogenic emissions of NOX, volatile organic compounds (VOCs; including CO), SO2, NH3, black carbon, organic carbon, and concentrations of methane, N2O and ozone-depleting halocarbons, using CMIP6 models. Concentration and emission changes of reactive species can cause multiple changes in the composition of radiatively active species: tropospheric ozone, stratospheric ozone, stratospheric water vapour, secondary inorganic and organic aerosol, and methane. Where possible we break down the ERFs from each emitted species into the contributions from the composition changes. The ERFs are calculated for each of the models that participated in the AerChemMIP experiments as part of the CMIP6 project, where the relevant model output was available. The 1850 to 2014 multi-model mean ERFs (± standard deviations) are −1.03 ± 0.37 W m−2 for SO2 emissions, −0.25 ± 0.09 W m−2 for organic carbon (OC), 0.15 ± 0.17 W m−2 for black carbon (BC) and −0.07 ± 0.01 W m−2 for NH3. For the combined aerosols (in the piClim-aer experiment) it is −1.01 ± 0.25 W m−2. The multi-model means for the reactive well-mixed greenhouse gases (including any effects on ozone and aerosol chemistry) are 0.67 ± 0.17 W m−2 for methane (CH4), 0.26 ± 0.07 W m−2 for nitrous oxide (N2O) and 0.12 ± 0.2 W m−2 for ozone-depleting halocarbons (HC). Emissions of the ozone precursors nitrogen oxides (NOx), volatile organic compounds and both together (O3) lead to ERFs of 0.14 ± 0.13, 0.09 ± 0.14 and 0.20 ± 0.07 W m−2 respectively. The differences in ERFs calculated for the different models reflect differences in the complexity of their aerosol and chemistry schemes, especially in the case of methane where tropospheric chemistry captures increased forcing from ozone production.


Sign in / Sign up

Export Citation Format

Share Document