scholarly journals Synergistic Combination of a Novel Metal-Free Mesoporous Band-Gap-Modified Carbon Nitride Grafted Polyaniline Nanocomposite for Decontamination of Refractory Pollutant

2018 ◽  
Vol 57 (19) ◽  
pp. 6684-6695 ◽  
Author(s):  
Balakumar Vellaichamy ◽  
Prakash Periakaruppan
Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 589 ◽  
Author(s):  
Hao Li ◽  
Zhien Zhang ◽  
Yulu Liu ◽  
Wanglai Cen ◽  
Xubiao Luo

Graphitic carbon nitride (g-C3N4) is a promising semiconductor material which has been widely studied in nanoscience. However, the effect of modifying the performance of g-C3N4 is still under debate. In this communication, we show the size and functional group effects on the g-C3N4 using density functional theory (DFT) calculations. It was found that a molecule with six repeated g-C3N4 units (g-C3N4-6) could be the smallest unit that converges to the limit of its HOMO–LUMO gap. Calculations of g-C3N4-6 with varying numbers of substituted C≡N, C=O, and O−H functional groups show that C≡N and C=O could narrow down the HOMO–LUMO gap, while O−H could slightly raise the gap. This study shows that the change of substituents could tune the band gap of g-C3N4, suggesting that rationally modifying the substituent at the edge of g-C3N4-based materials could help to significantly increase the photocatalytic properties of a metal-free g-C3N4.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Azami M. S. ◽  
Jalil A. A ◽  
Hitam C. N. C. ◽  
Mamat C. R ◽  
Siang T. J. ◽  
...  

Titanium dioxide (TiO2) has drawn widespread interest by researchers as a precious semiconductor that is responsive towards photodegradation of various pollutants. This catalyst has its own limitations such as fast electron-hole recombination, wide band gap, and can only be utilised under ultraviolet (UV) region. In order to overcome these problems, the addition of a metal-free dopant is a common practice to prevent electron-hole recombination and enhance photodegradation under visible light. Among various types of metal-free catalysts, carbon nitride material has received much attention due to its numerous benefits such as good in terms of physical and chemical strength, as well as an attractive electronic band combined with a band gap (2.7 eV). This review summarised recent works in the development of titania incorporated with graphitic carbon nitride (g-C3N4) for enhanced photocatalytic activity.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 24507-24512 ◽  
Author(s):  
Qi Li ◽  
Yi He ◽  
Rufang Peng

g-C3N4 possesses a band gap of approximately 2.7 eV. The conduction-band electrons (ecb−) and valence band holes (h+) could be generated when g-C3N4 was excited, which accelerate the thermal decomposition of ammonium perchlorate (AP).


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 411
Author(s):  
Taoreed O. Owolabi ◽  
Mohd Amiruddin Abd Rahman

Graphitic carbon nitride is a stable and distinct two dimensional carbon-based polymeric semiconductor with remarkable potentials in organic pollutants degradation, chemical sensors, the reduction of CO2, water splitting and other photocatalytic applications. Efficient utilization of this material is hampered by the nature of its band gap and the rapid recombination of electron-hole pairs. Heteroatom incorporation due to doping alters the symmetry of the semiconductor and has been among the adopted strategies to tailor the band gap for enhancing the visible-light harvesting capacity of the material. Electron modulation and enhancement of reaction active sites due to doping as evident from the change in specific surface area of doped graphitic carbon nitride is employed in this work for modeling the associated band gap using hybrid genetic algorithm-based support vector regression (GSVR) and extreme learning machine (ELM). The developed GSVR performs better than ELM-SINE (with sine activation function), ELM-TRANBAS (with triangular basis activation function) and ELM-SIG (with sigmoid activation function) model with performance enhancement of 69.92%, 73.59% and 73.67%, respectively, on the basis of root mean square error as a measure of performance. The four developed models are also compared using correlation coefficient and mean absolute error while the developed GSVR demonstrates a high degree of precision and robustness. The excellent generalization and predictive strength of the developed models would ultimately facilitate quick determination of the band gap of doped graphitic carbon nitride and enhance its visible-light harvesting capacity for various photocatalytic applications.


Sign in / Sign up

Export Citation Format

Share Document