Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides

Langmuir ◽  
2015 ◽  
Vol 31 (26) ◽  
pp. 7427-7434 ◽  
Author(s):  
Katsuhito Kondo ◽  
Akihiro Okamoto ◽  
Kazuhito Hashimoto ◽  
Ryuhei Nakamura
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yonggang Yang ◽  
Zegao Wang ◽  
Cuifen Gan ◽  
Lasse Hyldgaard Klausen ◽  
Robin Bonné ◽  
...  

AbstractLong-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.


2020 ◽  
Vol 7 (18) ◽  
pp. 3783-3789
Author(s):  
Tian‐Tian Liang ◽  
Lei Zhou ◽  
Muhammad Irfan ◽  
Yang Bai ◽  
Xue‐Zhi Liu ◽  
...  

mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicholas J. Kotloski ◽  
Jeffrey A. Gralnick

ABSTRACT Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. IMPORTANCE Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis. We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis. Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis.


2021 ◽  
Author(s):  
Mohammed Mouhib ◽  
Melania Reggente ◽  
Lin Li ◽  
Nils Schuergers ◽  
Ardemis Anoush Boghossian

Extracellular electron transfer (EET) engineering in Escherichia coli holds great potential for bioremediation, energy and electrosynthesis applications fueled by readily available organic substrates. Due to its vast metabolic capabilities and availability of synthetic biology tools to adapt strains to specific applications, E. coli is of advantage over native exoelectrogens, but limited in electron transfer rates. We enhanced EET in engineered strains through systematic expression of electron transfer pathways differing in cytochrome composition, localization and origin. While a hybrid pathway harboring components of an E. coli nitrate reductase and the Mtr complex from the exoelectrogen Shewanella oneidensis MR-1 enhanced EET, the highest efficiency was achieved by implementing the complete Mtr pathway from S. oneidensis MR1 in E. coli. We show periplasmic electron shuttling through overexpression of a small tetraheme cytochrome to be central to the electroactivity of this strain, leading to enhanced degradation of the pollutant methyl orange and significantly increased electrical current to graphite electrodes.


2013 ◽  
Vol 15 (44) ◽  
pp. 19262 ◽  
Author(s):  
Ryan Renslow ◽  
Jerome Babauta ◽  
Andrew Kuprat ◽  
Jim Schenk ◽  
Cornelius Ivory ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document