scholarly journals Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models

2021 ◽  
Vol 54 (5) ◽  
pp. 2031-2052 ◽  
Author(s):  
Kuan-Hsuan Shen ◽  
Mengdi Fan ◽  
Lisa M. Hall
2020 ◽  
Author(s):  
Florencia Klein ◽  
Daniela Cáceres-Rojas ◽  
Monica Carrasco ◽  
Juan Carlos Tapia ◽  
Julio Caballero ◽  
...  

<p>Although molecular dynamics simulations allow for the study of interactions among virtually all biomolecular entities, metal ions still pose significant challenges to achieve an accurate structural and dynamical description of many biological assemblies. This is particularly the case for coarse-grained (CG) models. Although the reduced computational cost of CG methods often makes them the technique of choice for the study of large biomolecular systems, the parameterization of metal ions is still very crude or simply not available for the vast majority of CG- force fields. Here, we show that incorporating statistical data retrieved from the Protein Data Bank (PDB) to set specific Lennard-Jones interactions can produce structurally accurate CG molecular dynamics simulations. Using this simple approach, we provide a set of interaction parameters for Calcium, Magnesium, and Zinc ions, which cover more than 80% of the metal-bound structures reported on the PDB. Simulations performed using the SIRAH force field on several proteins and DNA systems show that using the present approach it is possible to obtain non-bonded interaction parameters that obviate the use of topological constraints. </p>


Author(s):  
Łukasz Piotr Baran ◽  
Wojciech Rżysko ◽  
Dariusz Tarasewicz

In this study we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of...


2020 ◽  
Vol 22 (16) ◽  
pp. 8757-8767
Author(s):  
Tomasz Staszewski ◽  
Małgorzata Borówko

We use coarse-grained molecular dynamics simulations to study the behavior of polymer-tethered particles immersed in fluids of isotropic particles.


2021 ◽  
Author(s):  
Hiroki Koide ◽  
Noriyuki Kodera ◽  
Shveta Bisht ◽  
Shoji Takada ◽  
Tsuyoshi Terakawa

The condensin protein complex compacts chromatin during mitosis using its DNA-loop extrusion activity. Previous studies proposed scrunching and loop-capture models as molecular mechanisms for the loop extrusion process, both of which assume the binding of double-strand (ds) DNA to the so-called hinge domain formed at the interface of the condensin subunits Smc2 and Smc4. However, how the hinge domain contacts dsDNA has remained unknown, potentially due to its conformational plasticity. Here, we conducted atomic force microscopy imaging of the budding yeast condensin holo-complex and used this data as basis for coarse-grained molecular dynamics simulations to model the hinge structure in a transient open conformation. We then simulated the dsDNA binding to open and closed hinge conformations, predicting that dsDNA binds to the outside surface when closed and to the outside and inside surfaces when open. Our simulations also suggested that the hinge can close around dsDNA bound to the inside surface. The conformational change of the hinge domain might be essential for the dsDNA binding regulation and play important roles in condensin-mediated DNA-loop extrusion.


Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


2021 ◽  
Author(s):  
Soumya Lipsa Rath ◽  
Madhusmita Tripathy ◽  
Nabanita Mandal

Enveloped viruses, in general, have several transmembrane proteins and glycoproteins, which assist the virus in entry and attachment onto the host cells. These proteins also play a significant role in determining the shape and size of the newly formed virus particles. The lipid membrane and the embedded proteins affect each other in non-trivial ways during the course of the viral life cycle. Unravelling the nature of the protein-protein and protein-lipid interactions, under various environmental and physiological conditions, could therefore prove to be crucial in development of therapeutics. Here, we study the M protein of SARS-CoV-2 to understand the effect of temperature on the properties of the protein-membrane system. The membrane embedded dimeric M proteins were studied using atomistic and coarse-grained molecular dynamics simulations at temperatures ranging between 10 and 50 ˚C. While temperature induced fluctuations should be monotonic, we observe a steady rise in the protein dynamics up to 40 ˚C, beyond which it surprisingly reverts back to the low temperature behaviour. Detailed investigation reveals disordering of the membrane lipids in the presence of the protein, which induces additional curvature around the transmembrane region. Coarse-grained simulations indicate temperature dependent aggregation of M protein dimers. Our study clearly indicates that the dynamics of membrane lipids and integral M protein of SARS-CoV-2 enables it to better associate and aggregate only at a certain temperature range (i.e., ~30 to 40 ˚C). This can have important implications in the protein aggregation and subsequent viral budding/fission processes.   


Sign in / Sign up

Export Citation Format

Share Document